Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean

1990 ◽  
Vol 95 (D4) ◽  
pp. 3659 ◽  
Author(s):  
W. A. Hoppel ◽  
J. W. Fitzgerald ◽  
G. M. Frick ◽  
R. E. Larson ◽  
E. J. Mack
2001 ◽  
Vol 32 (8) ◽  
pp. 933-955 ◽  
Author(s):  
J Kuśmierczyk-Michulec ◽  
M Schulz ◽  
S Ruellan ◽  
O Krüger ◽  
E Plate ◽  
...  

2011 ◽  
Vol 11 (3) ◽  
pp. 7045-7093 ◽  
Author(s):  
Z. Hosaynali Beygi ◽  
H. Fischer ◽  
H. D. Harder ◽  
M. Martinez ◽  
R. Sander ◽  
...  

Abstract. Ozone (O3) is a photochemical oxidant, an air pollutant and a greenhouse gas. As the main precursor of the hydroxyl radical (OH) it strongly affects the oxidation power of the atmosphere. The remote marine boundary layer (MBL) is considered an important region in terms of chemical O3 loss; however surface-based atmospheric observations are sparse and the photochemical processes are not well understood. To investigate the photochemistry under the clean background conditions of the Southern Atlantic Ocean, ship measurements of NO, NO2, O3, JNO2, J(O1D), HO2, OH, ROx and a range of meteorological parameters were carried out. The concentrations of NO and NO2 measured on board the French research vessel Marion-Dufresne (28° S–57° S, 46° W–34° E) in March 2007, are among the lowest yet observed. The data is evaluated for consistency with photochemical steady state (PSS) conditions, and the calculations indicate substantial deviations from PSS (Φ>1). The deviations observed under low NOx conditions (5–25 pptv) demonstrate a remarkable upward tendency in the Leighton ratio (used to characterize PSS) with increasing NOx mixing ratio and JNO2 intensity. It is a paradigm in atmospheric chemistry that OH largely controls the oxidation efficiency of the atmosphere. However, evidence is growing that for unpolluted low-NOx (NO + NO2) conditions the atmospheric oxidant budget is poorly understood. Nevertheless, for the very cleanest conditions, typical for the remote marine boundary layer, good model agreement with measured OH and HO2 radicals has been interpreted as accurate understanding of baseline photochemistry. Here we show that such agreement can be deceptive and that a yet unidentified oxidant is needed to explain the photochemical conditions observed at 40°–60° S over the Atlantic Ocean.


2008 ◽  
Vol 8 (16) ◽  
pp. 4711-4728 ◽  
Author(s):  
S. R. Zorn ◽  
F. Drewnick ◽  
M. Schott ◽  
T. Hoffmann ◽  
S. Borrmann

Abstract. Measurements of the submicron fraction of the atmospheric aerosol in the marine boundary layer were performed from January to March 2007 (Southern Hemisphere summer) onboard the French research vessel Marion Dufresne in the Southern Atlantic and Indian Ocean (20° S–60° S, 70° W–60° E). We used an Aerodyne High-Resolution-Time-of-Flight AMS to characterize the chemical composition and to measure species-resolved size distributions of non-refractory aerosol components in the submicron range. Within the "standard" AMS compounds (ammonium, chloride, nitrate, sulfate, organics) "sulfate" is the dominant species in the marine boundary layer with concentrations ranging between 50 ng m−3 and 3 μg m−3. Furthermore, what is seen as "sulfate" by the AMS is likely comprised mostly of sulfuric acid. Another sulfur containing species that is produced in marine environments is methanesulfonic acid (MSA). There have been previously measurements of MSA using an Aerodyne AMS. However, due to the use of an instrument equipped with a quadrupole detector with unit mass resolution it was not possible to physically separate MSA from other contributions to the same m/z. In order to identify MSA within the HR-ToF-AMS raw data and to extract mass concentrations for MSA from the field measurements the standard high-resolution MSA fragmentation patterns for the measurement conditions during the ship campaign (e.g. vaporizer temperature) needed to be determined. To identify characteristic air masses and their source regions backwards trajectories were used and averaged concentrations for AMS standard compounds were calculated for each air mass type. Sulfate mass size distributions were measured for these periods showing a distinct difference between oceanic air masses and those from African outflow. While the peak in the mass distribution was roughly at 250 nm (vacuum aerodynamic diameter) in marine air masses, it was shifted to 470 nm in African outflow air. Correlations between the mass concentrations of sulfate, organics and MSA show a narrow correlation for MSA with sulfate/sulfuric acid coming from the ocean, but not with continental sulfate.


2020 ◽  
Vol 20 (19) ◽  
pp. 11491-11526 ◽  
Author(s):  
Yohei Shinozuka ◽  
Pablo E. Saide ◽  
Gonzalo A. Ferrada ◽  
Sharon P. Burton ◽  
Richard Ferrare ◽  
...  

Abstract. In the southeast Atlantic, well-defined smoke plumes from Africa advect over marine boundary layer cloud decks; both are most extensive around September, when most of the smoke resides in the free troposphere. A framework is put forth for evaluating the performance of a range of global and regional atmospheric composition models against observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) airborne mission in September 2016. A strength of the comparison is a focus on the spatial distribution of a wider range of aerosol composition and optical properties than has been done previously. The sparse airborne observations are aggregated into approximately 2∘ grid boxes and into three vertical layers: 3–6 km, the layer from cloud top to 3 km, and the cloud-topped marine boundary layer. Simulated aerosol extensive properties suggest that the flight-day observations are reasonably representative of the regional monthly average, with systematic deviations of 30 % or less. Evaluation against observations indicates that all models have strengths and weaknesses, and there is no single model that is superior to all the others in all metrics evaluated. Whereas all six models typically place the top of the smoke layer within 0–500 m of the airborne lidar observations, the models tend to place the smoke layer bottom 300–1400 m lower than the observations. A spatial pattern emerges, in which most models underestimate the mean of most smoke quantities (black carbon, extinction, carbon monoxide) on the diagonal corridor between 16∘ S, 6∘ E, and 10∘ S, 0∘ E, in the 3–6 km layer, and overestimate them further south, closer to the coast, where less aerosol is present. Model representations of the above-cloud aerosol optical depth differ more widely. Most models overestimate the organic aerosol mass concentrations relative to those of black carbon, and with less skill, indicating model uncertainties in secondary organic aerosol processes. Regional-mean free-tropospheric model ambient single scattering albedos vary widely, between 0.83 and 0.93 compared with in situ dry measurements centered at 0.86, despite minimal impact of humidification on particulate scattering. The modeled ratios of the particulate extinction to the sum of the black carbon and organic aerosol mass concentrations (a mass extinction efficiency proxy) are typically too low and vary too little spatially, with significant inter-model differences. Most models overestimate the carbonaceous mass within the offshore boundary layer. Overall, the diversity in the model biases suggests that different model processes are responsible. The wide range of model optical properties requires further scrutiny because of their importance for radiative effect estimates.


2019 ◽  
Vol 32 (10) ◽  
pp. 2991-3004 ◽  
Author(s):  
Juan P. Díaz ◽  
Francisco J. Expósito ◽  
Juan C. Pérez ◽  
Albano González ◽  
Yuqing Wang ◽  
...  

Abstract The marine boundary layer (MBL) is a key component of Earth’s climate system, and its main characteristics (height, entrainment efficiency, energy and mass fluxes, cloud formation processes, etc.) are closely linked to the properties of the inversion layer, which generally determines its height. Furthermore, cloud response to a warmer climate, one of the main sources of uncertainty in future climate projections, is highly dependent on changes in the MBL and in the inversion-layer properties. Long-term trends of the time series of MBL parameters at 32 stations in the Atlantic Ocean have been analyzed using conveniently homogenized radiosonde profiles from 1981 to 2010. In general, decreasing trends are found in the strength and thickness of the inversion layer and in the difference between the precipitable water vapor (PWV) in the free troposphere and the MBL. In contrast, positive trends are found in the height of the bottom of the inversion layer, the lapse rates of virtual and equivalent potential temperatures, the PWV within the boundary layer, and the sea surface temperature (SST). The weakening trend of the inversion layer and the increasing desiccation of the free troposphere relative to the MBL could have important consequences for both the evolution of low cloud cover in a greenhouse-warming climate and the fragile local ecosystems, such as “cloud forests.”


2018 ◽  
Vol 18 (19) ◽  
pp. 14623-14636 ◽  
Author(s):  
Michael S. Diamond ◽  
Amie Dobracki ◽  
Steffen Freitag ◽  
Jennifer D. Small Griswold ◽  
Ashley Heikkila ◽  
...  

Abstract. The colocation of clouds and smoke over the southeast Atlantic Ocean during the southern African biomass burning season has numerous radiative implications, including microphysical modulation of the clouds if smoke is entrained into the marine boundary layer. NASA's ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign is studying this system with aircraft in three field deployments between 2016 and 2018. Results from ORACLES-2016 show that the relationship between cloud droplet number concentration and smoke below cloud is consistent with previously reported values, whereas cloud droplet number concentration is only weakly associated with smoke immediately above cloud at the time of observation. By combining field observations, regional chemistry–climate modeling, and theoretical boundary layer aerosol budget equations, we show that the history of smoke entrainment (which has a characteristic mixing timescale on the order of days) helps explain variations in cloud properties for similar instantaneous above-cloud smoke environments. Precipitation processes can obscure the relationship between above-cloud smoke and cloud properties in parts of the southeast Atlantic, but marine boundary layer carbon monoxide concentrations for two case study flights suggest that smoke entrainment history drove the observed differences in cloud properties for those days. A Lagrangian framework following the clouds and accounting for the history of smoke entrainment and precipitation is likely necessary for quantitatively studying this system; an Eulerian framework (e.g., instantaneous correlation of A-train satellite observations) is unlikely to capture the true extent of smoke–cloud interaction in the southeast Atlantic.


2005 ◽  
Vol 75 (4) ◽  
pp. 301-321 ◽  
Author(s):  
Jarkko V. Niemi ◽  
Heikki Tervahattu ◽  
Aki Virkkula ◽  
Risto Hillamo ◽  
Kimmo Teinilä ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document