Neotectonic Deformation, Near-Surface Movements and Systematic Errors in U.S. Releveling Measurements: Implications for Earthquake Prediction

Author(s):  
Robert Reilinger ◽  
Larry Brown
2004 ◽  
Vol 5 (6) ◽  
pp. 1034-1048 ◽  
Author(s):  
Paul A. Dirmeyer ◽  
Mei Zhao

Abstract The potential role of the land surface state in improving predictions of seasonal climate is investigated with a coupled land–atmosphere climate model. Climate simulations for 18 boreal-summer seasons (1982–99) have been conducted with specified observed sea surface temperature (SST). The impact on prediction skill of the initial land surface state (interannually varying versus climatological soil wetness) and the effect of errors in downward surface fluxes (precipitation and longwave/shortwave radiation) over land are investigated with a number of parallel experiments. Flux errors are addressed by replacing the downward fluxes with observed values in various combinations to ascertain the separate roles of water and energy flux errors on land surface state variables, upward water and energy fluxes from the land surface, and the important climate variables of precipitation and near-surface air temperature. Large systematic errors are found in the model, which are only mildly alleviated by the specification of realistic initial soil wetness. The model shows little skill in simulating seasonal anomalies of precipitation, but it does have skill in simulating temperature variations. Replacement of the downward surface fluxes has a clear positive impact on systematic errors, suggesting that the land–atmosphere feedback is helping to exacerbate climate drift. Improvement in the simulation of year-to-year variations in climate is even more evident. With flux replacement, the climate model simulates temperature anomalies with considerable skill over nearly all land areas, and a large fraction of the globe shows significant skill in the simulation of precipitation anomalies. This suggests that the land surface can communicate climate anomalies back to the atmosphere, given proper meteorological forcing. Flux substitution appears to have the largest benefit to improving precipitation skill over the Northern Hemisphere midlatitudes, whereas use of realistic land surface initial conditions improves skill to significant levels over regions of the Southern Hemisphere. Correlations between sets of integrations show that the model has a robust and systematic global response to SST anomalies.


2012 ◽  
Vol 140 (4) ◽  
pp. 1326-1346 ◽  
Author(s):  
Mirta Patarčić ◽  
Čedo Branković

Various measures of forecast quality are analyzed for 2-m temperature seasonal forecasts over Europe from global and regional model ensembles for winter and summer seasons during the period 1991 to 2001. The 50-km Regional Climate Model (RegCM3) is used to dynamically downscale nine-member ensembles of ECMWF global experimental seasonal forecasts. Three sets of RegCM3 experiments with different soil moisture initializations are performed: the RegCM3 default initial soil moisture, initial soil moisture taken from ECMWF seasonal forecasts, and initial soil moisture obtained from RegCM3 ECMWF interim Re-Analysis (ERA-Interim)-driven integrations (RegCM3 climatology). Both deterministic and probabilistic skill metrics are estimated. The better-resolved spatial scales in near-surface temperature by RegCM3 do not necessarily lead to the improved regional model skill in the regions where systematic errors are large. The impact of initial soil moisture on RegCM3 forecast skill is seen in summer in the southern part of the integration domain. When regional model soil moisture was initialized from ECMWF seasonal forecasts, systematic errors were reduced and deterministic skill was enhanced relative to the other RegCM3 experiments. The Brier skill score for rare cold anomalies in this experiment is comparable to that of the global model, whereas in other experiments it is significantly smaller than in global model. There is no major impact of soil moisture initialization on forecast skill in winter. However, some significant improvements in RegCM3 probabilistic skill scores for positive anomalies in winter are found in the central part of the domain where RegCM3 systematic errors are smaller than in global model.


2020 ◽  
Vol 35 (6) ◽  
pp. 2255-2278
Author(s):  
Robert G. Fovell ◽  
Alex Gallagher

AbstractWhile numerical weather prediction models have made considerable progress regarding forecast skill, less attention has been paid to the planetary boundary layer. This study leverages High-Resolution Rapid Refresh (HRRR) forecasts on native levels, 1-s radiosonde data, and (primarily airport) surface observations across the conterminous United States. We construct temporally and spatially averaged composites of wind speed and potential temperature in the lowest 1 km for selected months to identify systematic errors in both forecasts and observations in this critical layer. We find near-surface temperature and wind speed predictions to be skillful, although wind biases were negatively correlated with observed speed and temperature biases revealed a robust relationship with station elevation. Above ≈250 m above ground level, below which radiosonde wind data were apparently contaminated by processing, biases were small for wind speed and potential temperature at the analysis time (which incorporates sonde data) but became substantial by the 24-h forecast. Wind biases were positive through the layer for both 0000 and 1200 UTC, and morning potential temperature profiles were marked by excessively steep lapse rates that persisted across seasons and (again) exaggerated at higher elevation sites. While the source or cause of these systematic errors are not fully understood, this analysis highlights areas for potential model improvement and the need for a continued and accessible archive of the data that make analyses like this possible.


Geophysics ◽  
1996 ◽  
Vol 61 (6) ◽  
pp. 1871-1882 ◽  
Author(s):  
James B. Harris

Determining the extent and location of surface/near‐surface structural deformation in the New Madrid seismic zone (NMSZ) is very important for evaluating earthquake hazards. A shallow shear‐wave splitting experiment, located near the crest of the Lake County uplift (LCU) in the central NMSZ, shows the presence of near‐surface azimuthal anisotropy believed to be associated with neotectonic deformation. A shallow four‐component data set, recorded using a hammer and mass source, displayed abundant shallow reflection energy on records made with orthogonal source‐receiver orientations, an indicator of shear‐wave splitting. Following rotation of the data matrix by 40°, the [Formula: see text] and [Formula: see text] sections (principal components of the data matrix) were aligned with the natural coordinate system at orientations of N35°W and N55°E, respectively. A dynamic mis‐tie of 8 ms at a two‐way traveltime of 375 ms produced an average azimuthal anisotropy of ≈2% between the target reflector (top of Quaternary gravel at a depth of 35 m) and the surface. Based on the shear‐wave polarization data, two explanations for the azimuthal anisotropy in the study area are (1) fractures/cracks aligned in response to near‐surface tensional stress produced by uplift of the LCU, and (2) faults/fractures oriented parallel to the Kentucky Bend scarp, a recently identified surface deformation feature believed to be associated with contemporary seismicity in the central NMSZ. In addition to increased seismic resolution by the use of shear‐wave methods in unconsolidated, water‐saturated sediments, measurement of near‐surface directional polarizations, produced by shear‐wave splitting, may provide valuable information for identifying neotectonic deformation and evaluating associated earthquake hazards.


1989 ◽  
Author(s):  
S.S. Alexander ◽  
D.P. Gold ◽  
T.W. Gardner ◽  
R.L. Slingerland ◽  
C.P. Thornton

1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


1978 ◽  
Vol 48 ◽  
pp. 7-29
Author(s):  
T. E. Lutz

This review paper deals with the use of statistical methods to evaluate systematic and random errors associated with trigonometric parallaxes. First, systematic errors which arise when using trigonometric parallaxes to calibrate luminosity systems are discussed. Next, determination of the external errors of parallax measurement are reviewed. Observatory corrections are discussed. Schilt’s point, that as the causes of these systematic differences between observatories are not known the computed corrections can not be applied appropriately, is emphasized. However, modern parallax work is sufficiently accurate that it is necessary to determine observatory corrections if full use is to be made of the potential precision of the data. To this end, it is suggested that a prior experimental design is required. Past experience has shown that accidental overlap of observing programs will not suffice to determine observatory corrections which are meaningful.


1988 ◽  
Vol 102 ◽  
pp. 215
Author(s):  
R.M. More ◽  
G.B. Zimmerman ◽  
Z. Zinamon

Autoionization and dielectronic attachment are usually omitted from rate equations for the non–LTE average–atom model, causing systematic errors in predicted ionization states and electronic populations for atoms in hot dense plasmas produced by laser irradiation of solid targets. We formulate a method by which dielectronic recombination can be included in average–atom calculations without conflict with the principle of detailed balance. The essential new feature in this extended average atom model is a treatment of strong correlations of electron populations induced by the dielectronic attachment process.


Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


Author(s):  
Naresh N. Thadhani ◽  
Thad Vreeland ◽  
Thomas J. Ahrens

A spherically-shaped, microcrystalline Ni-Ti alloy powder having fairly nonhomogeneous particle size distribution and chemical composition was consolidated with shock input energy of 316 kJ/kg. In the process of consolidation, shock energy is preferentially input at particle surfaces, resulting in melting of near-surface material and interparticle welding. The Ni-Ti powder particles were 2-60 μm in diameter (Fig. 1). About 30-40% of the powder particles were Ni-65wt% and balance were Ni-45wt%Ti (estimated by EMPA).Upon shock compaction, the two phase Ni-Ti powder particles were bonded together by the interparticle melt which rapidly solidified, usually to amorphous material. Fig. 2 is an optical micrograph (in plane of shock) of the consolidated Ni-Ti alloy powder, showing the particles with different etching contrast.


Sign in / Sign up

Export Citation Format

Share Document