Boundary Layer and Surface Verification of the High-Resolution Rapid Refresh, Version 3

2020 ◽  
Vol 35 (6) ◽  
pp. 2255-2278
Author(s):  
Robert G. Fovell ◽  
Alex Gallagher

AbstractWhile numerical weather prediction models have made considerable progress regarding forecast skill, less attention has been paid to the planetary boundary layer. This study leverages High-Resolution Rapid Refresh (HRRR) forecasts on native levels, 1-s radiosonde data, and (primarily airport) surface observations across the conterminous United States. We construct temporally and spatially averaged composites of wind speed and potential temperature in the lowest 1 km for selected months to identify systematic errors in both forecasts and observations in this critical layer. We find near-surface temperature and wind speed predictions to be skillful, although wind biases were negatively correlated with observed speed and temperature biases revealed a robust relationship with station elevation. Above ≈250 m above ground level, below which radiosonde wind data were apparently contaminated by processing, biases were small for wind speed and potential temperature at the analysis time (which incorporates sonde data) but became substantial by the 24-h forecast. Wind biases were positive through the layer for both 0000 and 1200 UTC, and morning potential temperature profiles were marked by excessively steep lapse rates that persisted across seasons and (again) exaggerated at higher elevation sites. While the source or cause of these systematic errors are not fully understood, this analysis highlights areas for potential model improvement and the need for a continued and accessible archive of the data that make analyses like this possible.

2012 ◽  
Vol 140 (9) ◽  
pp. 3017-3038 ◽  
Author(s):  
Anna C. Fitch ◽  
Joseph B. Olson ◽  
Julie K. Lundquist ◽  
Jimy Dudhia ◽  
Alok K. Gupta ◽  
...  

Abstract A new wind farm parameterization has been developed for the mesoscale numerical weather prediction model, the Weather Research and Forecasting model (WRF). The effects of wind turbines are represented by imposing a momentum sink on the mean flow; transferring kinetic energy into electricity and turbulent kinetic energy (TKE). The parameterization improves upon previous models, basing the atmospheric drag of turbines on the thrust coefficient of a modern commercial turbine. In addition, the source of TKE varies with wind speed, reflecting the amount of energy extracted from the atmosphere by the turbines that does not produce electrical energy. Analyses of idealized simulations of a large offshore wind farm are presented to highlight the perturbation induced by the wind farm and its interaction with the atmospheric boundary layer (BL). A wind speed deficit extended throughout the depth of the neutral boundary layer, above and downstream from the farm, with a long wake of 60-km e-folding distance. Within the farm the wind speed deficit reached a maximum reduction of 16%. A maximum increase of TKE, by nearly a factor of 7, was located within the farm. The increase in TKE extended to the top of the BL above the farm due to vertical transport and wind shear, significantly enhancing turbulent momentum fluxes. The TKE increased by a factor of 2 near the surface within the farm. Near-surface winds accelerated by up to 11%. These results are consistent with the few results available from observations and large-eddy simulations, indicating this parameterization provides a reasonable means of exploring potential downwind impacts of large wind farms.


2013 ◽  
Vol 6 (3) ◽  
pp. 5297-5344
Author(s):  
E. Pichelli ◽  
R. Ferretti ◽  
M. Cacciani ◽  
A. M. Siani ◽  
V. Ciardini ◽  
...  

Abstract. The urban forcing on thermo-dynamical conditions can largely influences local evolution of the atmospheric boundary layer. Urban heat storage can produce noteworthy mesoscale perturbations of the lower atmosphere. The new generations of high-resolution numerical weather prediction models (NWP) is nowadays largely applied also to urban areas. It is therefore critical to reproduce correctly the urban forcing which turns in variations of wind, temperature and water vapor content of the planetary boundary layer (PBL). WRF-ARW, a new model generation, has been used to reproduce the circulation in the urban area of Rome. A sensitivity study is performed using different PBL and surface schemes. The significant role of the surface forcing in the PBL evolution has been verified by comparing model results with observations coming from many instruments (LiDAR, SODAR, sonic anemometer and surface stations). The crucial role of a correct urban representation has been demonstrated by testing the impact of different urban canopy models (UCM) on the forecast. Only one of three meteorological events studied will be presented, chosen as statistically relevant for the area of interest. The WRF-ARW model shows a tendency to overestimate vertical transmission of horizontal momentum from upper levels to low atmosphere, that is partially corrected by local PBL scheme coupled with an advanced UCM. Depending on background meteorological scenario, WRF-ARW shows an opposite behavior in correctly representing canopy layer and upper levels when local and non local PBL are compared. Moreover a tendency of the model in largely underestimating vertical motions has been verified.


2019 ◽  
Author(s):  
Hendrik Wouters ◽  
Irina Y. Petrova ◽  
Chiel C. van Heerwaarden ◽  
Jordi Vilà-Guerau de Arellano ◽  
Adriaan J. Teuling ◽  
...  

Abstract. The coupling between soil, vegetation and atmosphere is thought to be crucial in the development and intensification of weather extremes, especially meteorological droughts, heatwaves and severe storms. Therefore, understanding evolution of the atmospheric boundary layer (ABL) and the role of land–atmosphere feedbacks is necessary for earlier warnings, better climate projection and timely societal adaptation. However, this understanding is hampered by the difficulties to attribute cause–effect relationships from complex coupled models, and the irregular space–time distribution of in situ observations of the land–atmosphere system. As such, there is a need for simple deterministic appraisals that systematically discriminate land–atmosphere interactions from observed weather phenomena over large domains and climatological time spans. Here, we present a new interactive data platform to study the behaviour of the ABL and land–atmosphere interactions based on worldwide weather balloon soundings and an ABL model. This software tool – referred to as CLASS4GL (http://class4gl.eu) – is developed with the objectives to (a) mine appropriate global observational data from over 2 million weather balloon soundings since 1981 and combine them with satellite and reanalysis data, and (b) constrain and initialize a numerical model of the daytime evolution of the ABL that serves as a tool to interpret these observations mechanistically and deterministically. As a result, it fully automises extensive global model experiments to assess the effects of land and atmospheric conditions on the ABL evolution as observed in different climate regions around the world. The suitability of the set of observations, model formulations and global parameters employed by CLASS4GL is extensively validated. In most cases, the framework is able to realistically reproduce the observed daytime response of the ABL height, potential temperature and specific humidity from the balloon soundings. In this extensive global validation exercise, a bias of 0.2 m h−1, −0.052 K h−1 and 0.07 g kg−1 h−1 is found for the morning-to-afternoon evolution of the ABL height, potential temperature and specific humidity. The virtual tool is in continuous development, and aims to foster a better process-understanding of the drivers of the ABL evolution and their global distribution, particularly during the onset and amplification of weather extremes. Finally, it can also be used to scrutinize the representation of land–atmosphere feedbacks and ABL dynamics in Earth system models, numerical weather prediction models, atmospheric reanalysis, and satellite retrievals, with the ultimate goal to improve local climate projections, provide earlier warning of extreme weather, and foster a more effective development of climate adaptation strategies. The tool can be easily downloaded via http://class4gl.eu and is open source.


2008 ◽  
Vol 47 (3) ◽  
pp. 752-768 ◽  
Author(s):  
Susanne Grossman-Clarke ◽  
Yubao Liu ◽  
Joseph A. Zehnder ◽  
Jerome D. Fast

Abstract A modified version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) was applied to the arid Phoenix, Arizona, metropolitan region. The ability of the model to simulate characteristics of the summertime urban planetary boundary layer (PBL) was tested by comparing model results with observations from two field campaigns conducted in May/June 1998 and June 2001. The modified MM5 included a refined land use/cover classification and updated land use data for Phoenix and bulk approaches of characteristics of the urban surface energy balance. PBL processes were simulated by a version of MM5’s Medium-Range Forecast Model (MRF) scheme that was enhanced by new surface flux and nonlocal mixing approaches. Simulated potential temperature profiles were tested against radiosonde data, indicating that the modified MRF scheme was able to simulate vertical mixing and the evolution and height of the PBL with good accuracy and better than the original MRF scheme except in the late afternoon. During both simulation periods, it is demonstrated that the modified MM5 simulated near-surface air temperatures and wind speeds in the urban area consistently and considerably better than the standard MM5 and that wind direction simulations were improved slightly.


2015 ◽  
Vol 72 (8) ◽  
pp. 3178-3198 ◽  
Author(s):  
Adam H. Monahan ◽  
Tim Rees ◽  
Yanping He ◽  
Norman McFarlane

Abstract A long time series of temporally high-resolution wind and potential temperature data from the 213-m tower at Cabauw in the Netherlands demonstrates the existence of two distinct regimes of the stably stratified nocturnal boundary layer at this location. Hidden Markov model (HMM) analysis is used to objectively characterize these regimes and classify individual observed states. The first regime is characterized by strongly stable stratification, large wind speed differences between 10 and 200 m, and relatively weak turbulence. The second is associated with near-neutral stratification, weaker wind speed differences between 10 and 200 m, and relatively strong turbulence. In this second regime, the state of the boundary layer is similar to that during the day. The occupation statistics of these regimes are shown to covary with the large-scale pressure gradient force and cloud cover such that the first regime predominates under clear skies with weak geostrophic wind speed and the second regime predominates under conditions of extensive cloud cover or large geostrophic wind speed. These regimes are not distinguished by standard measures of stability, such as the Obukhov length or the bulk Richardson number. Evidence is presented that the mechanism generating these distinct regimes is associated with a previously documented feedback resulting from the existence of an upper limit on the maximum downward heat flux that can be sustained for a given near-surface wind speed.


2011 ◽  
Vol 139 (12) ◽  
pp. 3781-3797 ◽  
Author(s):  
J.-W. Bao ◽  
C. W. Fairall ◽  
S. A. Michelson ◽  
L. Bianco

Abstract This paper focuses on parameterizing the effect of sea spray at hurricane-strength winds on the momentum and heat fluxes in weather prediction models using the Monin–Obukhov similarity theory (a common framework for the parameterizations of air–sea fluxes). In this scheme, the mass-density effect of sea spray is considered as an additional modification to the stratification of the near-surface profiles of wind, temperature, and moisture in the marine surface boundary layer (MSBL). The overall impact of sea-spray droplets on the mean profiles of wind, temperature, and moisture depends on the wind speed at the level of sea-spray generation. As the wind speed increases, the mean droplet size and the mass flux of sea-spray increase, rendering an increase of stability in the MSBL and the leveling-off of the surface drag. Sea spray also tends to increase the total air–sea sensible and latent heat fluxes at high winds. Results from sensitivity testing of the scheme in a numerical weather prediction model for an idealized case of hurricane intensification are presented along with a dynamical interpretation of the impact of the parameterized sea-spray physics on the structure of the hurricane boundary layer.


2010 ◽  
Vol 10 (6) ◽  
pp. 1129-1149 ◽  
Author(s):  
M. Milelli ◽  
M. Turco ◽  
E. Oberto

Abstract. The forecast in areas of very complex topography, as for instance the Alpine region, is still a challenge even for the new generation of numerical weather prediction models which aim at reaching the km-scale. The problem is enhanced by a general lack of standard observations, which is even more evident over the southern side of the Alps. For this reason, it would be useful to increase the performance of the mathematical models by locally assimilating non-conventional data. Since in ARPA Piemonte there is the availability of a great number of non-GTS stations, it has been decided to assimilate the 2 m temperature, coming from this dataset, in the very-high resolution version of the COSMO model, which has a horizontal resolution of about 3 km, more similar to the average resolution of the thermometers. Four different weather situations have been considered, ranging from spring to winter, from cloudy to clear sky. The aim of the work is to investigate the effects of the assimilation of non-GTS data in order to create an operational very high-resolution analysis, but also to test the option of running in the future a very short-range forecast starting from these analyses (RUC or Rapid Update Cycle). The results, in terms of Root Mean Square Error, Mean Error and diurnal cycle of some surface variables such as 2 m temperature, 2 m relative humidity and 10 m wind intensity show a positive impact during the assimilation cycle which tends to dissipate a few hours after the end of it. Moreover, the 2 m temperature assimilation has a slightly positive or neutral impact on the vertical profiles of temperature, eventhough some calibration is needed for the precipitation field which is too much perturbed during the assimilation cycle, while it is unaffected in the forecast period. So the stability of the planetary boundary layer, on the one hand, has not been particularly improved by the new-data assimilation, but, on the other hand, it has not been destroyed. It has to be pointed out that a correct description of the planetary boundary layer, even only the lowest part of it, could be helpful to the forecasters and, in general, to the users, in order to deal with meteorological hazards such as snow (in particular snow/rain limit definition), or fog (description of temperature inversions).


2010 ◽  
Vol 23 (23) ◽  
pp. 6277-6291 ◽  
Author(s):  
Frank O. Bryan ◽  
Robert Tomas ◽  
John M. Dennis ◽  
Dudley B. Chelton ◽  
Norman G. Loeb ◽  
...  

Abstract The emerging picture of frontal scale air–sea interaction derived from high-resolution satellite observations of surface winds and sea surface temperature (SST) provides a unique opportunity to test the fidelity of high-resolution coupled climate simulations. Initial analysis of the output of a suite of Community Climate System Model (CCSM) experiments indicates that characteristics of frontal scale ocean–atmosphere interaction, such as the positive correlation between SST and surface wind stress, are realistically captured only when the ocean component is eddy resolving. The strength of the coupling between SST and surface stress is weaker than observed, however, as has been found previously for numerical weather prediction models and other coupled climate models. The results are similar when the atmospheric component model grid resolution is doubled from 0.5° to 0.25°, an indication that shortcomings in the representation of subgrid scale atmospheric planetary boundary layer processes, rather than resolved scale processes, are responsible for the weakness of the coupling. In the coupled model solutions the response to mesoscale SST features is strongest in the atmospheric boundary layer, but there is a deeper reaching response of the atmospheric circulation apparent in free tropospheric clouds. This simulated response is shown to be consistent with satellite estimates of the relationship between mesoscale SST and all-sky albedo.


2021 ◽  
Vol 14 (9) ◽  
pp. 5977-5986
Author(s):  
Hui Li ◽  
Boming Liu ◽  
Xin Ma ◽  
Shikuan Jin ◽  
Yingying Ma ◽  
...  

Abstract. Radiosonde (RS) is widely used to detect the vertical structures of the planetary boundary layer (PBL), and numerous methods have been proposed for retrieving PBL height (PBLH) from RS data. However, an algorithm that is suitable under all atmospheric conditions does not exist. This study evaluates the performance of four common PBLH algorithms under different thermodynamic stability conditions based on RS data collected from nine sites in January–December 2019. The four RS algorithms are the potential temperature gradient method (GMθ), relative humidity (RH) gradient method (GMRH), parcel method (PM) and Richardson number method (RM). Atmospheric conditions are divided into convective boundary layer (CBL), neutral boundary layer (NBL) and stable boundary layer (SBL) on the basis of the potential temperature profile. Results indicate that SBL is dominant at nighttime, whilst CBL dominates at daytime. Under all and SBL classifications, PBLH retrieved by RM is typically higher than those retrieved using the other methods. On the contrary, the PBLH result retrieved by PM is the lowest. Under CBL and NBL classifications, PBLH retrieved by PM is the highest. PBLH retrieved by GMθ and GMRH is relatively low under all classifications. Moreover, the uncertainty analysis shows that the consistency of PBLH retrieved by different algorithms is more than 80 % under CBL and NBL classifications. By contrast, the consistency of PBLH is less than 60 % under SBL classification. The average profiles and standard deviations of wind speed and potential temperature under consistent and inconsistent conditions are also investigated. The results indicate that consistent cases are typically accompanied by evident atmospheric stratification, such as a large gradient in the potential temperature profile or a low-level jet in the wind speed profile. These results indicate that the reliability of the PBLH results retrieved from RS data is affected by the structure of the boundary layer. Overall, GMθ and RM are appropriate for CBL condition. GMθ and PM are recommended for NBL condition. GMθ and GMRH are robust for SBL condition. This comprehensive comparison provides a reference for selecting the appropriate algorithm when retrieving PBLH from RS data.


Author(s):  
Aristofanis Tsiringakis ◽  
Natalie E. Theeuwes ◽  
Janet F. Barlow ◽  
Gert-Jan Steeneveld

AbstractUnderstanding the physical processes that affect the turbulent structure of the nocturnal urban boundary layer (UBL) is essential for improving forecasts of air quality and the air temperature in urban areas. Low-level jets (LLJs) have been shown to affect turbulence in the nocturnal UBL. We investigate the interaction of a mesoscale LLJ with the UBL during a 60-h case study. We use observations from two Doppler lidars and results from two high-resolution numerical-weather-prediction models (Weather Research and Forecasting model, and the Met Office Unified Model for limited-area forecasts for the U.K.) to study differences in the occurrence frequency, height, wind speed, and fall-off of LLJs between an urban (London, U.K.) and a rural (Chilbolton, U.K.) site. The LLJs are elevated ($$\approx $$ ≈ 70 m) over London, due to the deeper UBL, while the wind speed and fall-off are slightly reduced with respect to the rural LLJ. Utilizing two idealized experiments in the WRF model, we find that topography strongly affects LLJ characteristics, but there is still a substantial urban influence. Finally, we find that the increase in wind shear under the LLJ enhances the shear production of turbulent kinetic energy and helps to maintain the vertical mixing in the nocturnal UBL.


Sign in / Sign up

Export Citation Format

Share Document