Iron carbide mineral that does not form naturally on Earth found in meteorite

AccessScience ◽  
2019 ◽  
Keyword(s):  
2021 ◽  
Vol 36 ◽  
pp. 459-465
Author(s):  
Gaojing Yang ◽  
Zepeng Liu ◽  
Suting Weng ◽  
Qinghua Zhang ◽  
Xuefeng Wang ◽  
...  

2021 ◽  
Vol 125 (5) ◽  
pp. 3055-3065
Author(s):  
Ya Bai ◽  
Jinjia Liu ◽  
Pengju Ren ◽  
Wenping Guo ◽  
Tao Wang ◽  
...  

Author(s):  
Baohua Zhang ◽  
Jia Chen ◽  
Huanhuan Guo ◽  
Mengying Le ◽  
Huazhang Guo ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 773
Author(s):  
Aleks Arinchtein ◽  
Meng-Yang Ye ◽  
Michael Geske ◽  
Marvin Frisch ◽  
Ralph Kraehnert

CO2 Fischer–Tropsch synthesis (CO2–FTS) is a promising technology enabling conversion of CO2 into valuable chemical feedstocks via hydrogenation. Iron–based CO2–FTS catalysts are known for their high activities and selectivities towards the formation of higher hydrocarbons. Importantly, iron carbides are the presumed active phase strongly associated with the formation of higher hydrocarbons. Yet, many factors such as reaction temperature, atmosphere, and pressure can lead to complex transformations between different oxide and/or carbide phases, which, in turn, alter selectivity. Thus, understanding the mechanism and kinetics of carbide formation remains challenging. We propose model–type iron oxide films of controlled nanostructure and phase composition as model materials to study carbide formation in syngas atmospheres. In the present work, different iron oxide precursor films with controlled phase composition (hematite, ferrihydrite, maghemite, maghemite/magnetite) and ordered mesoporosity are synthesized using the evaporation–induced self–assembly (EISA) approach. The model materials are then exposed to a controlled atmosphere of CO/H2 at 300 °C. Physicochemical analysis of the treated materials indicates that all oxides convert into carbides with a core–shell structure. The structure appears to consist of crystalline carbide cores surrounded by a partially oxidized carbide shell of low crystallinity. Larger crystallites in the original iron oxide result in larger carbide cores. The presented simple route for the synthesis and analysis of soft–templated iron carbide films will enable the elucidation of the dynamics of the oxide to carbide transformation in future work.


ChemCatChem ◽  
2015 ◽  
Vol 7 (21) ◽  
pp. 3594-3594
Author(s):  
Hunmin Park ◽  
Duck Hyun Youn ◽  
Jae Young Kim ◽  
Won Yong Kim ◽  
Yo Han Choi ◽  
...  

2021 ◽  
Vol 512 ◽  
pp. 230482
Author(s):  
Jie Xia ◽  
Yanxian Geng ◽  
Shuting Huang ◽  
Dongyun Chen ◽  
Najun Li ◽  
...  

2008 ◽  
Vol 1142 ◽  
Author(s):  
Hideto Yoshida ◽  
Seiji Takeda ◽  
Tetsuya Uchiyama ◽  
Hideo Kohno ◽  
Yoshikazu Homma

ABSTRACTNucleation and growth processes of carbon nanotubes (CNTs) in iron catalyzed chemical vapor deposition (CVD) have been observed by means of in-situ environmental transmission electron microscopy. Our atomic scale observations demonstrate that solid state iron carbide (Fe3C) nanoparticles act as catalyst for the CVD growth of CNTs. Iron carbide nanoparticles are structurally fluctuated in CVD condition. Growth of CNTs can be simply explained by bulk diffusion of carbon atoms since nanoparticles are carbide.


2014 ◽  
Vol 881-883 ◽  
pp. 98-101
Author(s):  
Guang Qiang Li ◽  
Heng Hui Wang ◽  
Jian Yang ◽  
Jiang Hua Ma

In order to find a new way to utilize the high phosphorus oolitic hematite ore as raw material for steelmaking, the reduction and carburization of high phosphorus oolitic hematite by the gas of CH4-H2were studied. High phosphorus oolitic hematite, reduction and carburization products were investigated by the means of XRD and scanning electron microscope. The SEM-EDS and XRD analysis show that the main compositions of this ore are hematite and quartz, main microstructure is oolitic cluster with the zonal distribution of hematite and apatite, and iron carbide can be prepared from high phosphorus oolitic hematite.


Author(s):  
Tomer Y. Burshtein ◽  
Denial Aias ◽  
Jin Wang ◽  
Matan Sananis ◽  
Eliyahu M. Farber ◽  
...  

Fe–N–C electrocatalysts hold a great promise for Pt-free energy conversion, driving the electrocatalysis of oxygen reduction and evolution, oxidation of nitrogen fuels, and reduction of N2, CO2, and NOx. Nevertheless,...


Sign in / Sign up

Export Citation Format

Share Document