scholarly journals Therapeutic effects of a taurine-magnesium coordination compound on experimental models of type 2 short QT syndrome

2017 ◽  
Vol 39 (3) ◽  
pp. 382-392 ◽  
Author(s):  
Meng-yao An ◽  
Kai Sun ◽  
Yan Li ◽  
Ying-ying Pan ◽  
Yong-qiang Yin ◽  
...  
EP Europace ◽  
2021 ◽  
Author(s):  
Xuehui Fan ◽  
Guoqiang Yang ◽  
Jacqueline Kowitz ◽  
Firat Duru ◽  
Ardan M Saguner ◽  
...  

Abstract Cardiovascular diseases are the main cause of sudden cardiac death (SCD) in developed and developing countries. Inherited cardiac channelopathies are linked to 5–10% of SCDs, mainly in the young. Short QT syndrome (SQTS) is a rare inherited channelopathy, which leads to both atrial and ventricular tachyarrhythmias, syncope, and even SCD. International European Society of Cardiology guidelines include as diagnostic criteria: (i) QTc ≤ 340 ms on electrocardiogram, (ii) QTc ≤ 360 ms plus one of the follwing, an affected short QT syndrome pathogenic gene mutation, or family history of SQTS, or aborted cardiac arrest, or family history of cardiac arrest in the young. However, further evaluation of the QTc ranges seems to be required, which might be possible by assembling large short QT cohorts and considering genetic screening of the newly described pathogenic mutations. Since the mechanisms underlying the arrhythmogenesis of SQTS is unclear, optimal therapy for SQTS is still lacking. The disease is rare, unclear genotype–phenotype correlations exist in a bevy of cases and the absence of an international short QT registry limit studies on the pathophysiological mechanisms of arrhythmogenesis and therapy of SQTS. This leads to the necessity of experimental models or platforms for studying SQTS. Here, we focus on reviewing preclinical SQTS models and platforms such as animal models, heterologous expression systems, human-induced pluripotent stem cell-derived cardiomyocyte models and computer models as well as three-dimensional engineered heart tissues. We discuss their usefulness for SQTS studies to examine genotype–phenotype associations, uncover disease mechanisms and test drugs. These models might be helpful for providing novel insights into the exact pathophysiological mechanisms of this channelopathy and may offer opportunities to improve the diagnosis and treatment of patients with SQT syndrome.


2014 ◽  
Vol 171 (2) ◽  
pp. 291-293 ◽  
Author(s):  
Alice Maltret ◽  
Sylvette Wiener-Vacher ◽  
Charlotte Denis ◽  
Fabrice Extramiana ◽  
Marie Paule Morisseau-Durand ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Ada Krawęcka ◽  
Aldona Sobota ◽  
Emilia Sykut-Domańska

Type 2 diabetes has become one of the major health problems of the modern world. It is assumed that environmental factors have a significant impact on the development of the disease, and great importance is ascribed to the diet, which can be modified accordingly. The diet can exert prophylactic and therapeutic effects; changes in the diet in advanced disease can improve the quality of life of diabetic patients and minimise the risk of complications, which are the direct cause of diabetes-related death. Functional food, which has a potentially health-enhancing effect in addition to its nutritional value, has been increasingly recognised and required. Cereal products are crucial in diabetic nutrition. Their function can additionally be enhanced by fortification with compounds with proven hypoglycaemic effects. Pasta has a low glycaemic index and is a good carrier of fortifying substances; hence, it can be highly recommended in diets for diabetic patients.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hyun Sok Yoo ◽  
Nancy Medina ◽  
María Alejandra von Wulffen ◽  
Natalia Ciampi ◽  
Analia Paolucci ◽  
...  

Abstract Background The congenital long QT syndrome type 2 is caused by mutations in KCNH2 gene that encodes the alpha subunit of potassium channel Kv11.1. The carriers of the pathogenic variant of KCNH2 gene manifest a phenotype characterized by prolongation of QT interval and increased risk of sudden cardiac death due to life-threatening ventricular tachyarrhythmias. Results A family composed of 17 members with a family history of sudden death and recurrent syncopes was studied. The DNA of proband with clinical manifestations of long QT syndrome was analyzed using a massive DNA sequencer that included the following genes: KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, ANK2, KCNJ2, CACNA1, CAV3, SCN1B, SCN4B, AKAP9, SNTA1, CALM1, KCNJ5, RYR2 and TRDN. DNA sequencing of proband identified a novel pathogenic variant of KCNH2 gene produced by a heterozygous frameshift mutation c.46delG, pAsp16Thrfs*44 resulting in the synthesis of a truncated alpha subunit of the Kv11.1 ion channel. Eight family members manifested the phenotype of long QT syndrome. The study of family segregation using Sanger sequencing revealed the identical variant in several members of the family with a positive phenotype. Conclusions The clinical and genetic findings of this family demonstrate that the novel frameshift mutation causing haploinsufficiency can result in a congenital long QT syndrome with a severe phenotypic manifestation and an elevated risk of sudden cardiac death.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2131
Author(s):  
Shujuan Zheng ◽  
Yanan Wang ◽  
Jingjing Fang ◽  
Ruixuan Geng ◽  
Mengjie Li ◽  
...  

Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of type 2 diabetes. However, the efficacy of OP on the advanced stage of type 2 diabetes has not been investigated, and the relationship between OP and intestinal flora has not been studied. Therefore, in this study, to explore the relieving effects of OP intake on the advanced stage of type 2 diabetes and the regulatory effects of OP on intestinal microbes, diabetic db/db mice (17-week-old) were treated with OP at the dose of 200 mg/kg for 15 weeks. We found that OP has a significant effect in decreasing fasting blood glucose levels, improving glucose tolerance, lowering the homeostasis model assessment–insulin resistance index, restoring histopathological features of tissues, and promoting hepatic protein kinase B activation in db/db mice. Notably, OP modulates gut microbiota at phylum level, increases the relative abundance of Verrucomicrobia and Deferribacteres, and decreases the relative abundance of Bacteroidetes. OP treatment increases the relative abundance of Akkermansia, as well as decreases the relative abundance of Prevotella, Odoribacter, Ruminococcus, and Parabacteroides at genus level. In conclusion, OP may ameliorate the advanced stage of type 2 diabetes through modulating the composition and function of gut microbiota. Our findings provide a promising therapeutic approach for the treatment of advanced stage type 2 diabetes.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 570
Author(s):  
Marina Yazigi Solis ◽  
Guilherme Giannini Artioli ◽  
Bruno Gualano

Creatine is one of the most popular supplements worldwide, and it is frequently used by both athletic and non-athletic populations to improve power, strength, muscle mass and performance. A growing body of evidence has been identified potential therapeutic effects of creatine in a wide variety of clinical conditions, such as cancer, muscle dystrophy and neurodegenerative disorders. Evidence has suggested that creatine supplementation alone, and mainly in combination with exercise training, may improve glucose metabolism in health individuals and insulin-resistant individuals, such as in those with type 2 diabetes mellitus. Creatine itself may stimulate insulin secretion in vitro, improve muscle glycogen stores and ameliorate hyperglycemia in animals. In addition, exercise induces numerous metabolic benefits, including increases in insulin-independent muscle glucose uptake and insulin sensitivity. It has been speculated that creatine supplementation combined with exercise training could result in additional improvements in glucose metabolism when compared with each intervention separately. The possible mechanism underlying the effects of combined exercise and creatine supplementation is an enhanced glucose transport into muscle cell by type 4 glucose transporter (GLUT-4) translocation to sarcolemma. Although preliminary findings from small-scale trials involving patients with type 2 diabetes mellitus are promising, the efficacy of creatine for improving glycemic control is yet to be confirmed. In this review, we aim to explore the possible therapeutic role of creatine supplementation on glucose management and as a potential anti-diabetic intervention, summarizing the current knowledge and highlighting the research gaps.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 404
Author(s):  
Emma Altobelli ◽  
Paolo Matteo Angeletti ◽  
Ciro Marziliano ◽  
Marianna Mastrodomenico ◽  
Anna Rita Giuliani ◽  
...  

Diabetes mellitus is an important issue for public health, and it is growing in the world. In recent years, there has been a growing research interest on efficacy evidence of the curcumin use in the regulation of glycemia and lipidaemia. The molecular structure of curcumins allows to intercept reactive oxygen species (ROI) that are particularly harmful in chronic inflammation and tumorigenesis models. The aim of our study performed a systematic review and meta-analysis to evaluate the effect of curcumin on glycemic and lipid profile in subjects with uncomplicated type 2 diabetes. The papers included in the meta-analysis were sought in the MEDLINE, EMBASE, Scopus, Clinicaltrials.gov, Web of Science, and Cochrane Library databases as of October 2020. The sizes were pooled across studies in order to obtain an overall effect size. A random effects model was used to account for different sources of variation among studies. Cohen’s d, with 95% confidence interval (CI) was used as a measure of the effect size. Heterogeneity was assessed while using Q statistics. The ANOVA-Q test was used to value the differences among groups. Publication bias was analyzed and represented by a funnel plot. Curcumin treatment does not show a statistically significant reduction between treated and untreated patients. On the other hand, glycosylated hemoglobin, homeostasis model assessment (HOMA), and low-density lipoprotein (LDL) showed a statistically significant reduction in subjects that were treated with curcumin, respectively (p = 0.008, p < 0.001, p = 0.021). When considering HBA1c, the meta-regressions only showed statistical significance for gender (p = 0.034). Our meta-analysis seems to confirm the benefits on glucose metabolism, with results that appear to be more solid than those of lipid metabolism. However, further studies are needed in order to test the efficacy and safety of curcumin in uncomplicated type 2 diabetes.


2009 ◽  
Vol 17 (6) ◽  
pp. 300-303 ◽  
Author(s):  
Umang Patel ◽  
Behzad B. Pavri

Sign in / Sign up

Export Citation Format

Share Document