scholarly journals Oleuropein Ameliorates Advanced Stage of Type 2 Diabetes in db/db Mice by Regulating Gut Microbiota

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2131
Author(s):  
Shujuan Zheng ◽  
Yanan Wang ◽  
Jingjing Fang ◽  
Ruixuan Geng ◽  
Mengjie Li ◽  
...  

Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of type 2 diabetes. However, the efficacy of OP on the advanced stage of type 2 diabetes has not been investigated, and the relationship between OP and intestinal flora has not been studied. Therefore, in this study, to explore the relieving effects of OP intake on the advanced stage of type 2 diabetes and the regulatory effects of OP on intestinal microbes, diabetic db/db mice (17-week-old) were treated with OP at the dose of 200 mg/kg for 15 weeks. We found that OP has a significant effect in decreasing fasting blood glucose levels, improving glucose tolerance, lowering the homeostasis model assessment–insulin resistance index, restoring histopathological features of tissues, and promoting hepatic protein kinase B activation in db/db mice. Notably, OP modulates gut microbiota at phylum level, increases the relative abundance of Verrucomicrobia and Deferribacteres, and decreases the relative abundance of Bacteroidetes. OP treatment increases the relative abundance of Akkermansia, as well as decreases the relative abundance of Prevotella, Odoribacter, Ruminococcus, and Parabacteroides at genus level. In conclusion, OP may ameliorate the advanced stage of type 2 diabetes through modulating the composition and function of gut microbiota. Our findings provide a promising therapeutic approach for the treatment of advanced stage type 2 diabetes.

Proceedings ◽  
2020 ◽  
Vol 61 (1) ◽  
pp. 28
Author(s):  
Omorogieva Ojo ◽  
Qianqian Feng ◽  
Osarhumwese Osaretin Ojo ◽  
Xiaohua Wang

Background: Diabetes prevalence is on the increase globally and its impact on those with the condition in terms of acute and chronic complications can be profound. People with type 2 diabetes constitute the majority of those with the condition and the risk factors include obesity, lifestyle and gut microbiota dysbiosis. Poor dietary intake has been reported to influence the community of the gut microbiome. Therefore, a higher intake of dietary fibre may alter the environment in the gut and promote microbial growth and proliferation. Aim: This is a systematic review and meta-analysis which examined the effect of dietary fibre on gut microbiota in patients with type 2 diabetes. Method: This review was conducted in line with the PRISMA framework. Databases were searched for relevant articles which were screened based on inclusion and exclusion criteria. Results: Nine articles which met the inclusion criteria were selected for the systematic review and meta-analysis. High dietary fibre intake significantly improved (p < 0.05) the abundance of Bifidobacterium, total short-chain fatty acids (SCFAs) and HbA1c. Discussion: The promotion of SCFA producers in terms of greater diversity and abundance by dietary fibre may have resulted in improvement in glycated haemoglobin, partly due to increased GLP–1 production. Conclusion: High consumption of dietary fibre has a significant (p < 0.05) effect on Bifidobacterium, total SCFAs and HbA1c, but not (p > 0.05) on propionic, butyric and acetic acid, fasting blood glucose and the homeostatic model assessment of insulin resistance HOMAR–IR.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 404
Author(s):  
Emma Altobelli ◽  
Paolo Matteo Angeletti ◽  
Ciro Marziliano ◽  
Marianna Mastrodomenico ◽  
Anna Rita Giuliani ◽  
...  

Diabetes mellitus is an important issue for public health, and it is growing in the world. In recent years, there has been a growing research interest on efficacy evidence of the curcumin use in the regulation of glycemia and lipidaemia. The molecular structure of curcumins allows to intercept reactive oxygen species (ROI) that are particularly harmful in chronic inflammation and tumorigenesis models. The aim of our study performed a systematic review and meta-analysis to evaluate the effect of curcumin on glycemic and lipid profile in subjects with uncomplicated type 2 diabetes. The papers included in the meta-analysis were sought in the MEDLINE, EMBASE, Scopus, Clinicaltrials.gov, Web of Science, and Cochrane Library databases as of October 2020. The sizes were pooled across studies in order to obtain an overall effect size. A random effects model was used to account for different sources of variation among studies. Cohen’s d, with 95% confidence interval (CI) was used as a measure of the effect size. Heterogeneity was assessed while using Q statistics. The ANOVA-Q test was used to value the differences among groups. Publication bias was analyzed and represented by a funnel plot. Curcumin treatment does not show a statistically significant reduction between treated and untreated patients. On the other hand, glycosylated hemoglobin, homeostasis model assessment (HOMA), and low-density lipoprotein (LDL) showed a statistically significant reduction in subjects that were treated with curcumin, respectively (p = 0.008, p < 0.001, p = 0.021). When considering HBA1c, the meta-regressions only showed statistical significance for gender (p = 0.034). Our meta-analysis seems to confirm the benefits on glucose metabolism, with results that appear to be more solid than those of lipid metabolism. However, further studies are needed in order to test the efficacy and safety of curcumin in uncomplicated type 2 diabetes.


2018 ◽  
Vol 315 (6) ◽  
pp. E1242-E1250 ◽  
Author(s):  
Donghua Hu ◽  
Ryan D. Russell ◽  
Devika Remash ◽  
Timothy Greenaway ◽  
Stephen Rattigan ◽  
...  

The microcirculation in adipose tissue is markedly impaired in type 2 diabetes (T2D). Resistance training (RT) often increases muscle mass and promotes a favorable metabolic profile in people with T2D, even in the absence of fat loss. Whether the metabolic benefits of RT in T2D are linked to improvements in adipose tissue microvascular blood flow is unknown. Eighteen sedentary people with T2D (7 women/11 men, 52 ± 7 yr) completed 6 wk of RT. Before and after RT, overnight-fasted participants had blood sampled for clinical chemistries (glucose, insulin, lipids, HbA1c, and proinflammatory markers) and underwent an oral glucose challenge (OGC; 50 g glucose × 2 h) and a DEXA scan to assess body composition. Adipose tissue microvascular blood volume and flow were assessed at rest and 1 h post-OGC using contrast-enhanced ultrasound. RT significantly reduced fasting blood glucose ( P = 0.006), HbA1c ( P = 0.007), 2-h glucose area under the time curve post-OGC ( P = 0.014), and homeostatic model assessment of insulin resistance ( P = 0.005). This was accompanied by a small reduction in total body fat ( P = 0.002), trunk fat ( P = 0.023), and fasting triglyceride levels ( P = 0.029). Lean mass ( P = 0.003), circulating TNF-α ( P = 0.006), and soluble VCAM-1 ( P < 0.001) increased post-RT. There were no significant changes in adipose tissue microvascular blood volume or flow following RT; however those who did have a higher baseline microvascular blood flow post-RT also had lower fasting triglyceride levels ( r = −0.476, P = 0.045). The anthropometric, glycemic, and insulin-sensitizing benefits of 6 wk of RT in people with T2D are not associated with an improvement in adipose tissue microvascular responses; however, there may be an adipose tissue microvascular-linked benefit to fasting triglyceride levels.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3377
Author(s):  
Omorogieva Ojo ◽  
Xiao-Hua Wang ◽  
Osarhumwese Osaretin Ojo ◽  
Amanda Rodrigues Amorim Adegboye

The use of nutritional interventions for managing diabetes is one of the effective strategies aimed at reducing the global prevalence of the condition, which is on the rise. Almonds are the most consumed tree nut and they are known to be rich sources of protein, monounsaturated fatty acids, essential minerals, and dietary fibre. Therefore, the aim of this review was to evaluate the effects of almonds on gut microbiota, glycometabolism, and inflammatory parameters in patients with type 2 diabetes. Methods: This systematic review and meta-analysis was carried out according to the preferred reporting items for systematic review and meta-analysis (PRISMA). EBSCOhost, which encompasses the Health Sciences Research Databases; Google Scholar; EMBASE; and the reference lists of articles were searched based on population, intervention, control, outcome, and study (PICOS) framework. Searches were carried out from database inception until 1 August 2021 based on medical subject headings (MesH) and synonyms. The meta-analysis was carried out with the Review Manager (RevMan) 5.3 software. Results: Nine randomised studies were included in the systematic review and eight were used for the meta-analysis. The results would suggest that almond-based diets have significant effects in promoting the growth of short-chain fatty acid (SCFA)-producing gut microbiota. Furthermore, the meta-analysis showed that almond-based diets were effective in significantly lowering (p < 0.05) glycated haemoglobin (HbA1c) levels and body mass index (BMI) in patients with type 2 diabetes. However, it was also found that the effects of almonds were not significant (p > 0.05) in relation to fasting blood glucose, 2 h postprandial blood glucose, inflammatory markers (C-reactive protein and Tumour necrosis factor α, TNF-α), glucagon-like peptide-1 (GLP-1), homeostatic model assessment of insulin resistance (HOMA–IR), and fasting insulin. The biological mechanisms responsible for the outcomes observed in this review in relation to reduction in HbA1c and BMI may be based on the nutrient composition of almonds and the biological effects, including the high fibre content and the low glycaemic index profile. Conclusion: The findings of this systematic review and meta-analysis have shown that almond-based diets may be effective in promoting short-chain fatty acid-producing bacteria and lowering glycated haemoglobin and body mass index in patients with type 2 diabetes compared with control. However, the effects of almonds were not significant (p > 0.05) with respect to fasting blood glucose, 2 h postprandial blood glucose, inflammatory markers (C-reactive protein and TNF-α), GLP-1, HOMA–IR, and fasting insulin.


2020 ◽  
Author(s):  
Shakiba Naiemian ◽  
Mohsen naeemipour ◽  
Mehdi Zarei ◽  
Ali Gohari ◽  
Mohammad Reza Behroozikhah ◽  
...  

Abstract Background: Asprosin, a newly identified adipokine, is pathologically increased in individuals with insulin resistance. However, the available evidence on the association of asprosin and type 2 diabetes mellitus (T2DM) status is still scarce. Therefore, this study aimed to determine the relationship between serum concentrations of asprosin and T2DM status . Methods: This observational study was performed based on 194 adults (97 newly diagnosed T2DM and 97 healthy individuals). Anthropometric and biochemical variables were determined in all participants . Serum concentrations of asprosin were measured using enzyme-linked immunosorbent assay (ELISA). Results: In patients with T2DM, the serum concentrations of asprosin were significantly higher than the healthy controls (4.18 [IQR: 4.4] vs. 3.5 [IQR: 1.85], P< 0.001). The concentrations of asprosin were significantly correlated with body mass index (BMI) and fasting blood glucose (FBG) in healthy subjects and with BMI, FBG, hemoglobin A1c (HbA1c), homeostatic model assessment of insulin resistance (HOMA-IR), and quantitative insulin check index (QUICKI), triacylglycerol (TAG) and total cholesterol/ high-density lipoprotein cholesterol (TC/HDL-C) ratio in the T2DM group. In fully adjusted model, the odds ratio (OR) of T2DM with serum concentrations of asprosin was approximately 1.547 (95% CI 1.293-1.850, P< 0.001) compared to the control group . Multiple stepwise regression analysis indicated that FBG and HOMA-IR were independently associated with asprosin in T2DM. Conclusion : Our findings indicated that serum concentrations of asprosin are increased in patients with T2DM. Also, asprosin is correlated with insulin resistance and TC/HDL-C ratio (atherosclerotic risk factor of cardiovascular diseases) in patients with T2DM.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liping Zhang ◽  
Fen Wang ◽  
Hualiang He ◽  
Tingting Jiao ◽  
Lili Wu

Dysregulation of gut microbiota contributes to the development of type 2 diabetes. To investigate the antidiabetic effect of Tangnaikang and its regulation of gut microbiota in diabetic KKAy mice, a type 2 diabetes mouse model was established by feeding KKAy mice with a high-fat diet (HFD) for 2 weeks. The diabetic KKAy mice were treated with vehicle, Acarbose, or different doses of Tangnaikang once a day for 8 weeks. The fasting plasma glucose (FPG) levels and bodyweights were measured weekly. The fecal and blood samples were collected 8 weeks after treatment. The 16s rRNA sequencing and bioinformatics analysis were conducted to explore the effects of Tangnaikang treatment on the richness, diversity, and relative abundance of gut microbiota. Compared with other treatments, high-dose Tangnaikang (4.68 g/kg) significantly reduced FPG levels while elevating bodyweights in model mice. Compared with saline treatment, different doses of Tangnaikang significantly increased gut microbial species richness and diversity. Linear discriminant analysis effect size identified potential bacterial biomarkers associated with Tangnaikang treatment. Relative abundance analysis revealed that Tangnaikang treatment modulated the abundance of gut bacteria at the class and genus levels, such as Bacilli, Lactobacillus, and Alistipes. The principal component analysis demonstrated that, compared with the samples of the high-dose group, the samples of medium-dose and low-dose groups were closer to those of the model group. Tangnaikang alleviated hyperglycemia and improved the composition and abundance of gut microbiota in diabetic KKAy mice.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiujie Jiang ◽  
Qingpeng Xu ◽  
Aiwu Zhang ◽  
Yong Liu ◽  
Zhijiang Li ◽  
...  

Type 2 diabetes mellitus (T2DM) is one of the most common metabolic diseases, and exploring strategies to prevent and treat diabetes has become extremely important. In recent decades the search for new therapeutic strategies for T2DM involving dietary interventions has attracted public attention. We established a diabetic mouse model by feeding mice a high-fat diet combined with injection of low-dose streptozotocin, intending to elucidate the effects and possible mechanisms of different dosages of γ-aminobutyric acid (GABA)-rich germinated adzuki beans on the treatment of diabetes in mice. The mice were treated for 6 weeks either with increasing doses of GABA-enriched germinated adzuki beans, with non-germinated adzuki beans, with GABA, or with the positive control drug metformin. Then, the blood glucose levels and blood lipid biochemical indicators of all the mice were measured. At the same time, serum differential metabolite interactions were explored by UPLC-Q/TOF-MS-based serum metabolomic analysis. The results showed that body weight and fasting blood glucose levels were significantly reduced (P &lt; 0.05). We also report improved levels of total cholesterol, triglycerides, aspartate aminotransferase, alanine aminotransferase, urea, and serum creatinine. We observed a significant improvement in the homeostasis model assessment of the beta cell function and insulin resistance (HOMA-β and HOMA-IR) scores (P &lt; 0.05) in the group of mice treated with the highest dose of GABA-enriched germinated adzuki beans. In addition, the metabolic profiles of the serum were analyzed, and 31 differential metabolites including amino acids and lipids were obtained. According to the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, this was found to be correlated with nine significantly enriched metabolic pathways involving the up-regulation of levels of L-serine, SM (d18:1/22:1(13Z)), L-histidine, creatine, and 3-indoleacetic acid. Our data suggest that the hypoglycemic effect of GABA-enriched germinated adzuki beans on diabetic mice may be related to improving tryptophan metabolism, glycerol phospholipid metabolism, sphingosline metabolism, and the glycine, serine, and threonine metabolic pathways. This study provides a reference for the application of GABA-enriched germinated foods in type 2 diabetes and could provide a cue for searching biomarkers to be adopted for T2DM diagnosis.


2020 ◽  
Vol 17 (4) ◽  
pp. 355-364 ◽  
Author(s):  
Sai Tian ◽  
Rong Huang ◽  
Dan Guo ◽  
Hongyan Lin ◽  
Jiaqi Wang ◽  
...  

Background: β-Site APP-cleaving enzyme 1 (BACE1) is a key enzyme involved in the pathophysiology of Type 2 Diabetes Mellitus (T2DM) and Mild Cognitive Impairment (MCI). We aimed to investigate the potential associations of plasma BACE1 levels and BACE1 gene polymorphism with different cognitive performances in T2DM patients with MCI. Methods: The recruited 186 T2DM subjects were divided into 92 MCI group and 94 healthy-cognition controls, according to the Montreal Cognitive Assessment (MoCA) scores. Sociodemographic characteristics, clinical parameters and neuropsychological tests were assessed. BACE1 C786G gene polymorphism and plasma BACE1 level were determined. Results: Compared to controls, MCI patients exhibited higher plasma BACE1 levels. Plasma BACE1 levels were negatively associated with MoCA, Clock Drawing Test and Logical Memory Test scores, whereas positively associated with Trail Making Test-B time in the MCI group (all p<0.05), after adjusting fasting blood glucose, glycosylated hemoglobin, and homeostasis model assessment of insulin resistance by C-peptide. Multivariable logistic regression analysis showed a significant trend towards increased MCI risk with high plasma BACE1 level in T2DM patients (OR = 1.492, p = 0.027). The plasma BACE1 levels of GG and GC genotypes were obviously higher than that of CC genotype in T2DM-MCI patients (p = 0.035; p = 0.026, respectively). Conclusion: Increased plasma BACE1 levels were associated with poor overall cognition functions, especially visuospatial abilities, visual/logical memory and executive functions in T2DM-MCI patients. Additionally, elevated plasma BACE1 level was a risk factor for MCI in T2DM patients, and might be influenced by BACE1 C786G gene mutations.


Author(s):  
Walid Kamal Abdelbasset

Backgrounds: Both exercise and metformin are used to control blood glucose levels in patients with type 2 diabetes mellitus (T2DM) while no previous studies have investigated the effect of resistance exercise combined with metformin versus aerobic exercise with metformin in T2DM patients. Objectives: This study was conducted to compare the effects of resistance exercise combined with metformin versus aerobic exercise with metformin in T2DM patients Methods: Fifty-seven T2DM patients with a mean age of 46.2±8.3 years were randomized to three study groups, each group included nineteen patients. The first group conducted a resistance exercise program (REP, 50-60% of 1RM, for 40-50 min) combined with metformin, the second group conducted an aerobic exercise program (AEP, 50-70% maxHR, for 40-50 min) combined with metformin, and the third group received only metformin without exercise intervention (Met group). The study program was conducted trice weekly for executive twelve weeks. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), homeostatic model assessment of insulin resistance (HOMAIR), and maximal oxygen uptake (VO2max) were evaluated before and after study intervention. Results: Significant differences were reported after the 12-week intervention inter-groups in the outcome variables (p˂0.05). FBG, HbA1c, HOMA-IR, and VO2max improved significantly in REP group (p˂0.001) and also in the AEP group (p=0.016, p=0.036, p=0.024, and p=0.019 respectively) while the Met group showed only significant reduction in FBG (p=0.049), and non-significant changes in HbA1c, HOMA-IR, and VO2max (p˃0.05). REP group achieved greater improvements than AEP group (FBG, p=0.034; HbA1c%, p=0.002; HOMA-IR, p˂0.001; and VO2max, p=0.024). Conclusions: Both resistance and aerobic exercise programs combined with metformin are effective in controlling T2DM. Resistance exercise combined with metformin is more effective than aerobic exercise combined with metformin in the treatment of T2DM.


2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Qi Jiang ◽  
Xue-Man Lyu ◽  
Yi Yuan ◽  
Ling Wang

To investigate the roles of plasma miR-21 in the pathogenic process of Type 2 diabetes (T2D) with diabetic retinopathy (DR). T2D patients included patients without DR (NDR) group, patients with non-proliferative/background DR (BDR) group and patients with proliferative DR (PDR) group. Healthy individuals served as control group. Fasting plasma glucose (FPG), glycosylated haemoglobin (HbA1c), triacylglycerol (TG), total cholesterol (TC), urine creatinine (Cr), fasting blood glucose (FBG), blood urea nitrogen (BUN), low-density lipoprotein cholesterol (LDL-C), fasting insulin (FINS) and plasma miR-21 expression were measured. Quantitative real-time PCR (qRT-PCR) was applied to detect miR-21 expression. Pearson analysis was used to conduct correlation analysis and receiver operating characteristic (ROC) curve was used to analyse the diagnostic value of miR-21 in T2D with DR. Compared with the control group, FBG and HbA1c increased in the NDR group; compared with the control and NDR groups, disease course, HbA1c, FPG levels and homoeostasis model assessment of insulin resistance (HOMA-IR) were increased in the BDR and PDR groups; and compared with the BDR group, disease course, HbA1c and FPG levels were higher in the PDR group. miR-21 expression was higher in the BDR group than the control group, and higher in the PDR group than the BDR group. miR-21 expression was positively related with disease course, HbA1C, FPG and HOMA-IR, and had diagnostic value for T2D with DR and PDR. The plasma miR-21 expression was increased in the development of T2D with DR and can be used as an indicator for the severity of T2D with DR.


Sign in / Sign up

Export Citation Format

Share Document