In vivo effects of cytokines on pancreatic β‐cells in models of type I diabetes dependent on CD4 + T lymphocytes

2008 ◽  
Vol 87 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Eveline Angstetra ◽  
Kate L Graham ◽  
Sarah Emmett ◽  
Nadine L Dudek ◽  
Rima Darwiche ◽  
...  
2021 ◽  
Author(s):  
Haisong Liu ◽  
Ronghui Li ◽  
Hsin-Kai Liao ◽  
Juan Carlos Izpisua Belmonte

Abstract The efficient generation of pancreatic β cells from human pluripotent stem cells may allow us to study their biological characteristics and use them for the treatment of type I diabetes. The protocol we present in the study provides an efficient method for producing β cells using either human embryonic stem cells or human induced pluripotent stem cells as the starting material.


2021 ◽  
Author(s):  
Xingjing Liu ◽  
Peng Sun ◽  
Qingzhao Yuan ◽  
Jinyang Xie ◽  
Ting Xiao ◽  
...  

Calcium/calmodulin-dependent serine protein kinase (CASK) is involved in the secretion of insulin vesicles in pancreatic β-cells. The present study revealed a new <i>in vivo </i>role of CASK in glucose homeostasis during the progression of type 2 diabetes mellitus (T2DM). A Cre-loxP system was used to specifically delete the <i>Cask </i>gene in mouse β-cells (βCASKKO), and the glucose metabolism was evaluated in <a>βCASKKO</a> mice fed a normal chow diet (ND) or a high-fat diet (HFD). ND-fed mice exhibited impaired insulin secretion in response to glucose stimulation. Transmission electron microscopy showed significantly reduced numbers of insulin granules at or near the cell membrane in the islets of βCASKKO mice. By contrast, HFD-fed βCASKKO mice showed reduced blood glucose and a partial relief of hyperinsulinemia and insulin resistance when compared to HFD-fed wildtype mice. The IRS1/PI3K/AKT signaling pathway was upregulated in the adipose tissue of HFD-βCASKKO mice. These results indicated that knockout of the <i>Cask</i> gene in β cells had a diverse effect on glucose homeostasis: reduced insulin secretion in ND-fed mice, but improves insulin sensitivity in HFD-fed mice. Therefore, CASK appears to function in the insulin secretion and contributes to hyperinsulinemia and insulin resistance during the development of obesity-related T2DM.


2019 ◽  
Vol 18 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Arjun Jain ◽  
Vidhi Mehrotra ◽  
Ira Jha ◽  
Ashok Jain

2019 ◽  
Vol 9 ◽  
Author(s):  
Rashmi Rajappa ◽  
Dornadula Sireesh ◽  
Magesh B. Salai ◽  
Kunka M. Ramkumar ◽  
Suryanarayanan Sarvajayakesavulu ◽  
...  

2020 ◽  
Vol 21 (13) ◽  
pp. 4668
Author(s):  
Rebecca Scheuer ◽  
Stephan Ernst Philipp ◽  
Alexander Becker ◽  
Lisa Nalbach ◽  
Emmanuel Ampofo ◽  
...  

The regulation of insulin biosynthesis and secretion in pancreatic β-cells is essential for glucose homeostasis in humans. Previous findings point to the highly conserved, ubiquitously expressed serine/threonine kinase CK2 as having a negative regulatory impact on this regulation. In the cell culture model of rat pancreatic β-cells INS-1, insulin secretion is enhanced after CK2 inhibition. This enhancement is preceded by a rise in the cytosolic Ca2+ concentration. Here, we identified the serine residues S2362 and S2364 of the voltage-dependent calcium channel CaV2.1 as targets of CK2 phosphorylation. Furthermore, co-immunoprecipitation experiments revealed that CaV2.1 binds to CK2 in vitro and in vivo. CaV2.1 knockdown experiments showed that the increase in the intracellular Ca2+ concentration, followed by an enhanced insulin secretion upon CK2 inhibition, is due to a Ca2+ influx through CaV2.1 channels. In summary, our results point to a modulating role of CK2 in the CaV2.1-mediated exocytosis of insulin.


Endocrinology ◽  
2020 ◽  
Vol 161 (11) ◽  
Author(s):  
Daniel W Clough ◽  
Jessica L King ◽  
Feiran Li ◽  
Lonnie D Shea

Abstract Cell-based therapies are emerging for type I diabetes mellitus (T1D), an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, as a means to provide long-term restoration of glycemic control. Biomaterial scaffolds provide an opportunity to enhance the manufacturing and transplantation of islets or stem cell–derived β-cells. In contrast to encapsulation strategies that prevent host contact with the graft, recent approaches aim to integrate the transplant with the host to facilitate glucose sensing and insulin distribution, while also needing to modulate the immune response. Scaffolds can provide a supportive niche for cells either during the manufacturing process or following transplantation at extrahepatic sites. Scaffolds are being functionalized to deliver oxygen, angiogenic, anti-inflammatory, or trophic factors, and may facilitate cotransplantation of cells that can enhance engraftment or modulate immune responses. This local engineering of the transplant environment can complement systemic approaches for maximizing β-cell function or modulating immune responses leading to rejection. This review discusses the various scaffold platforms and design parameters that have been identified for the manufacture of human pluripotent stem cell–derived β-cells, and the transplantation of islets/β-cells to maintain normal blood glucose levels.


2006 ◽  
Vol 5 (2) ◽  
pp. 7290.2006.00007 ◽  
Author(s):  
Steven J. Smith ◽  
Hongbing Zhang ◽  
Anne O. Clermont ◽  
Alvin C. Powers ◽  
Dixon B. Kaufman ◽  
...  

2008 ◽  
Vol 58 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Daniele Santini ◽  
Federico Martini ◽  
Maria Elisabetta Fratto ◽  
Sara Galluzzo ◽  
Bruno Vincenzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document