Expansion of chemical space for natural products by uncommon P450 reactions

2017 ◽  
Vol 34 (9) ◽  
pp. 1061-1089 ◽  
Author(s):  
Xingwang Zhang ◽  
Shengying Li

This review focuses on unusual P450 reactions related to new chemistry, skeleton construction, structure re-shaping, and protein–protein interactions in natural product biosynthesis, which play significant roles in chemical space expansion for natural products.

Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Rafael de Felício ◽  
Patricia Ballone ◽  
Cristina Freitas Bazzano ◽  
Luiz F. G. Alves ◽  
Renata Sigrist ◽  
...  

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2596-2607
Author(s):  
R. P. Vivek-Ananth ◽  
Ajaya Kumar Sahoo ◽  
Kavyaa Kumaravel ◽  
Karthikeyan Mohanraj ◽  
Areejit Samal

First dedicated manually curated resource on secondary metabolites and therapeutic uses of medicinal fungi. Cheminformatics based analysis of the chemical space of fungal natural products.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Grigalunas ◽  
Annina Burhop ◽  
Sarah Zinken ◽  
Axel Pahl ◽  
José-Manuel Gally ◽  
...  

AbstractNatural product structure and fragment-based compound development inspire pseudo-natural product design through different combinations of a given natural product fragment set to compound classes expected to be chemically and biologically diverse. We describe the synthetic combination of the fragment-sized natural products quinine, quinidine, sinomenine, and griseofulvin with chromanone or indole-containing fragments to provide a 244-member pseudo-natural product collection. Cheminformatic analyses reveal that the resulting eight pseudo-natural product classes are chemically diverse and share both drug- and natural product-like properties. Unbiased biological evaluation by cell painting demonstrates that bioactivity of pseudo-natural products, guiding natural products, and fragments differ and that combination of different fragments dominates establishment of unique bioactivity. Identification of phenotypic fragment dominance enables design of compound classes with correctly predicted bioactivity. The results demonstrate that fusion of natural product fragments in different combinations and arrangements can provide chemically and biologically diverse pseudo-natural product classes for wider exploration of biologically relevant chemical space.


2014 ◽  
Vol 10 ◽  
pp. 1228-1232 ◽  
Author(s):  
Jens Schmidt ◽  
Zeinab Khalil ◽  
Robert J Capon ◽  
Christian B W Stark

The heronapyrroles A–C have first been isolated from a marine-derived Streptomyces sp. (CMB-0423) in 2010. Structurally, these natural products feature an unusual nitropyrrole system to which a partially oxidized farnesyl chain is attached. The varying degree of oxidation of the sesquiterpenyl subunit in heronapyrroles A–C provoked the hypothesis that there might exist other hitherto unidentified metabolites. On biosynthetic grounds a mono-tetrahydrofuran-diol named heronapyrrole D appeared a possible candidate. We here describe a short asymmetric synthesis of heronapyrrole D, its detection in cultivations of CMB-0423 and finally the evaluation of its antibacterial activity. We thus demonstrate that biosynthetic considerations and the joint effort of synthetic and natural product chemists can result in the identification of new members of a rare class of natural products.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Mark C. Walker

ABSTRACT Mark Walker studies the biosynthesis and engineering of bacterial natural products with the long-term goal of identifying new antibiotic compounds. In this mSphere of Influence, he reflects on how “Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A” by K. Yamanaka, K. A. Reynolds, R. D. Kersten, K. S. Ryan, et al. (Proc Natl Acad Sci USA 111:1957–1962, 2014, https://doi.org/10.1073/pnas.1319584111) impacted his thinking on using synthetic biology approaches to study natural product biosynthesis.


2020 ◽  
Vol 37 (4) ◽  
pp. 566-599 ◽  
Author(s):  
Marc G. Chevrette ◽  
Karina Gutiérrez-García ◽  
Nelly Selem-Mojica ◽  
César Aguilar-Martínez ◽  
Alan Yañez-Olvera ◽  
...  

We review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial natural products biosynthesis, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits.


2020 ◽  
Vol 37 (11) ◽  
pp. 1436-1453 ◽  
Author(s):  
Nathanyal J. Truax ◽  
Daniel Romo

Various synthetic strategies have been developed to explore natural products as an enduring source of chemical information useful for probing biological relevant chemical space and impacting drug discovery.


2012 ◽  
Vol 78 (8) ◽  
pp. 2497-2504 ◽  
Author(s):  
Ming Jiang ◽  
Gregory Stephanopoulos ◽  
Blaine A. Pfeifer

ABSTRACTEscherichia colioffers unparalleled engineering capacity in the context of heterologous natural product biosynthesis. However, as with other heterologous hosts, cellular metabolism must be designed or redesigned to support final compound formation. This task is at once complicated and aided by the fact that the cell does not natively produce an abundance of natural products. As a result, the metabolic engineer avoids complicated interactions with native pathways closely associated with the outcome of interest, but this convenience is tempered by the need to implement the required metabolism to allow functional biosynthesis. This review focuses on engineeringE. colifor the purpose of polyisoprene formation, as it is related to isoprenoid compounds currently being pursued through a heterologous approach. In particular, the review features the compound paclitaxel and early efforts to design and overproduce intermediates throughE. coli.


2016 ◽  
Vol 69 (2) ◽  
pp. 129 ◽  
Author(s):  
John A. Kalaitzis ◽  
Shane D. Ingrey ◽  
Rocky Chau ◽  
Yvette Simon ◽  
Brett A. Neilan

Historically microbial natural product biosynthesis pathways were elucidated mainly by isotope labelled precursor directed feeding studies. Now the genetics underpinning the assembly of microbial natural products biosynthesis is so well understood that some pathways and their products can be predicted from DNA sequences alone. The association between microbial natural products and their biosynthesis gene clusters is now driving the field of ‘genetics guided natural product discovery’. This account overviews our research into cyanotoxin biosynthesis before the genome sequencing era through to some recent discoveries resulting from the mining of Australian biota for natural product biosynthesis pathways.


Sign in / Sign up

Export Citation Format

Share Document