scholarly journals Metabolic Acidosis Induced by Plasmodium Falciparum Intraerythrocytic Stages Alters Blood—Brain Barrier Integrity

2010 ◽  
Vol 31 (2) ◽  
pp. 514-526 ◽  
Author(s):  
Sergine Zougbédé ◽  
Florence Miller ◽  
Philippe Ravassard ◽  
Angelita Rebollo ◽  
Liliane Cicéron ◽  
...  

The pathogenesis of cerebral malaria (CM) remains largely unknown. There is growing evidence that combination of both parasite and host factors could be involved in blood–brain barrier (BBB) breakdown. However, lack of adequate in vitro model of human BBB so far hampered molecular studies. In this article, we propose the use of hCMEC/D3 cells, a well-established human cerebral microvascular endothelial cell (EC) line, to study BBB breakdown induced by Plasmodium falciparum-parasitized red blood cells and environmental conditions. We show that coculture of parasitized erythrocytes with hCMEC/D3 cells induces cell adhesion and paracellular permeability increase, which correlates with disorganization of zonula occludens protein 1 expression pattern. Permeability increase and modification of tight junction proteins distribution are cytoadhesion independent. Finally, we show that permeability of hCMEC/D3 cell monolayers is mediated through parasite induced metabolic acidosis, which in turns correlates with apoptosis of parasitized erythrocytes. This new coculture model represents a very useful tool, which will improve the knowledge of BBB breakdown and the development of adjuvant therapies, together with antiparasitic drugs.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Joel D. Gaston ◽  
Lauren L. Bischel ◽  
Lisa A. Fitzgerald ◽  
Kathleen D. Cusick ◽  
Bradley R. Ringeisen ◽  
...  

Disruption of the blood-brain barrier (BBB) is the hallmark of many neurovascular disorders, making it a critically important focus for therapeutic options. However, testing the effects of either drugs or pathological agents is difficult due to the potentially damaging consequences of altering the normal brain microenvironment. Recently, in vitro coculture tissue models have been developed as an alternative to animal testing. Despite low cost, these platforms use synthetic scaffolds which prevent normal barrier architecture, cellular crosstalk, and tissue remodeling. We created a biodegradable electrospun gelatin mat “biopaper” (BP) as a scaffold material for an endothelial/astrocyte coculture model allowing cell-cell contact and crosstalk. To compare the BP and traditional models, we investigated the expression of 27 genes involved in BBB permeability, cellular function, and endothelial junctions at different time points. Gene expression levels demonstrated higher expression of transcripts involved in endothelial junction formation, including TJP2 and CDH5, in the BP model. The traditional model had higher expression of genes associated with extracellular matrix-associated proteins, including SPARC and COL4A1. Overall, the results demonstrate that the BP coculture model is more representative of a healthy BBB state, though both models have advantages that may be useful in disease modeling.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Maxime De Laere ◽  
Carmelita Sousa ◽  
Megha Meena ◽  
Roeland Buckinx ◽  
Jean-Pierre Timmermans ◽  
...  

Many neuroinflammatory diseases are characterized by massive immune cell infiltration into the central nervous system. Identifying the underlying mechanisms could aid in the development of therapeutic strategies specifically interfering with inflammatory cell trafficking. To achieve this, we implemented and validated a blood–brain barrier (BBB) model to study chemokine secretion, chemokine transport, and leukocyte trafficking in vitro. In a coculture model consisting of a human cerebral microvascular endothelial cell line and human astrocytes, proinflammatory stimulation downregulated the expression of tight junction proteins, while the expression of adhesion molecules and chemokines was upregulated. Moreover, chemokine transport across BBB cocultures was upregulated, as evidenced by a significantly increased concentration of the inflammatory chemokine CCL3 at the luminal side following proinflammatory stimulation. CCL3 transport occurred independently of the chemokine receptors CCR1 and CCR5, albeit that migrated cells displayed increased expression of CCR1 and CCR5. However, overall leukocyte transmigration was reduced in inflammatory conditions, although higher numbers of leukocytes adhered to activated endothelial cells. Altogether, our findings demonstrate that prominent barrier activation following proinflammatory stimulation is insufficient to drive immune cell recruitment, suggesting that additional traffic cues are crucial to mediate the increased immune cell infiltration seen in vivo during neuroinflammation.


2021 ◽  
Vol 1 (5) ◽  
pp. 2170051
Author(s):  
Christina L. Schofield ◽  
Aleixandre Rodrigo-Navarro ◽  
Matthew J. Dalby ◽  
Tom Van Agtmael ◽  
Manuel Salmeron-Sanchez

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 892
Author(s):  
Elisa L. J. Moya ◽  
Elodie Vandenhaute ◽  
Eleonora Rizzi ◽  
Marie-Christine Boucau ◽  
Johan Hachani ◽  
...  

Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood–brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.


2021 ◽  
Vol 34 ◽  
pp. 102377
Author(s):  
Laís Ribovski ◽  
Edwin de Jong ◽  
Olga Mergel ◽  
Guangyue Zu ◽  
Damla Keskin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document