scholarly journals H2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension

2016 ◽  
Vol 97 (3) ◽  
pp. 268-278 ◽  
Author(s):  
Shasha Feng ◽  
Siyao Chen ◽  
Wen Yu ◽  
Da Zhang ◽  
Chunyu Zhang ◽  
...  
Hypertension ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 985-996 ◽  
Author(s):  
Grégoire Ruffenach ◽  
Ellen O’Connor ◽  
Mylène Vaillancourt ◽  
Jason Hong ◽  
Nancy Cao ◽  
...  

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased mean pulmonary arterial pressure. Elevated plasma and lung concentrations of oxidized lipids, including 15-hydroxyeicosatetraenoic acid (15-HETE), have been demonstrated in patients with PAH and animal models. We previously demonstrated that feeding mice with 15-HETE is sufficient to induce pulmonary hypertension, but the mechanisms remain unknown. RNA sequencing data from the mouse lungs on 15-HETE diet revealed significant activation of pathways involved in both antigen processing and presentation and T cell–mediated cytotoxicity. Analysis of human microarray from patients with PAH also identified activation of identical pathways compared with controls. We show that in both 15-HETE–fed mice and patients with PAH, expression of the immunoproteasome subunit 5 is significantly increased, which was concomitant with an increase in the number of CD8/CD69 (cluster of differentiation 8 / cluster of differentiation 69) double-positive cells, as well as pulmonary arterial endothelial cell apoptosis in mice. Human pulmonary arterial endothelial cells cultured with 15-HETE were more prone to apoptosis when exposed to CD8 cells. Cultured intestinal epithelial cells secreted more oxidized lipids in response to 15-HETE, which is consistent with accumulation of circulating oxidized lipids in 15-HETE–fed mice. Administration of an apoA-I (apolipoprotein A-I) mimetic peptide, Tg6F (transgenic 6F), which is known to prevent accumulation of circulating oxidized lipids, not only inhibited pulmonary arterial endothelial cell apoptosis but also prevented and rescued 15-HETE–induced pulmonary hypertension in mice. In conclusion, our results suggest that (1) 15-HETE diet induces pulmonary hypertension by a mechanism that involves oxidized lipid-mediated T cell–dependent pulmonary arterial endothelial cell apoptosis and (2) Tg6F administration may be a novel therapy for treating PAH.


2021 ◽  
Vol 118 (17) ◽  
pp. e2023130118
Author(s):  
Zdravka Daneva ◽  
Corina Marziano ◽  
Matteo Ottolini ◽  
Yen-Lin Chen ◽  
Thomas M. Baker ◽  
...  

Recent studies have focused on the contribution of capillary endothelial TRPV4 channels to pulmonary pathologies, including lung edema and lung injury. However, in pulmonary hypertension (PH), small pulmonary arteries are the focus of the pathology, and endothelial TRPV4 channels in this crucial anatomy remain unexplored in PH. Here, we provide evidence that TRPV4 channels in endothelial cell caveolae maintain a low pulmonary arterial pressure under normal conditions. Moreover, the activity of caveolar TRPV4 channels is impaired in pulmonary arteries from mouse models of PH and PH patients. In PH, up-regulation of iNOS and NOX1 enzymes at endothelial cell caveolae results in the formation of the oxidant molecule peroxynitrite. Peroxynitrite, in turn, targets the structural protein caveolin-1 to reduce the activity of TRPV4 channels. These results suggest that endothelial caveolin-1–TRPV4 channel signaling lowers pulmonary arterial pressure, and impairment of endothelial caveolin-1–TRPV4 channel signaling contributes to elevated pulmonary arterial pressure in PH. Thus, inhibiting NOX1 or iNOS activity, or lowering endothelial peroxynitrite levels, may represent strategies for restoring vasodilation and pulmonary arterial pressure in PH.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Sakai ◽  
H Maruyama ◽  
M Ieda

Abstract Background Endothelial dysfunction is thought to be a major contributor to overall pathogenesis of vasculopathy seen in pulmonary hypertension (PH), which is manifested by the impaired release of nitric oxide (NO) generated through endothelial nitric oxide synthase (eNOS) in endothelial cells. Activation of human eNOS is regulated by phosphorylation at multiple sites including Thr33 and Ser114, which residues are followed by Pro. The peptidyl isomerase Pin1 specifically isomerizes the phospho-protein having Ser/Thr-Pro bond and regulates their activity. Pin1 is involved in proliferation, cell cycle, and apoptosis in cancer, by isomerizing some functional molecules such as JNK, JUN, cyclin D, BAX, etc. However, it is controversial whether direct interaction of Pin1 with eNOS and how eNOS activity is altered by Pin1, especially in PH. Purpose We aimed to clarify whether Pin1 contributes to the PH development using Pin1 knockout mice and Pin1 affects the expression of phosphorylated eNOS (p-eNOS) molecule and pulmonary arterial endothelial cell (PAEC) apoptosis. Methods and results Wild (WT) and Pin1-deficient mice (KO) were exposed to hypoxia (10% O2) or normoxia for 3 weeks to generate hypoxia-induced PH. Hypoxia-inducible factor (HIF1α) expression in lungs was significantly enhanced in WT-hypoxia (WH, n=6) and KO-hypoxia (KH, n=6), suggesting that hypoxic response was certainly occurred in these mice. Pulmonary arterial pressure did not elevate in KH compared with KO-normoxia (KN, n=6) and WT-normoxia (WN, n=6), it was significantly increased only in WH (P<0.01), indicating that KO did not develop PH by hypoxia. The gain of RV weight was parallel to the increase of pulmonary arterial pressure. Western blot showed that p-eNOS expression in lungs was significantly decreased in WH compared to WN, however, the expression was not different between KH and KN. It suggests that Pin1 plays a regulatory role in p-eNOS expression in hypoxic response. In cultured PAECs, the expression of p-eNOS and eNOS was markedly increased by siRNA-mediated Pin1 knockdown. Immunoprecipitation study showed the possibility of Pin1 binding to p-eNOS molecule. Apoptosis evaluated by caspase-3/7 activity by fluorescent assay and cleaved caspase-3 expression by Western blot was significantly increased by Pin1 overexpression in PAECs; however, it was significantly decreased by Pin1 knockdown. Moreover, the exaggeration of apoptosis induced by doxorubicin was markedly increased by Pin1 overexpression compared with control in PAECs; however, it was clearly suppressed by Pin1 knockdown. Conclusion This study suggests that endogenous Pin1 contributes to the development of PH partly via the dysfunction of PAECs, that is, by the interference with p-eNOS expression and by the increase of apoptosis inducibility to external stimuli. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): JSPS KAKENHI


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sudhiranjan Gupta ◽  
Li Li

MicroRNAs (miRNAs) have emerged as a new class of posttranscriptional regulators of many cardiac and vascular diseases. They are a class of small, noncoding RNAs that contributes crucial roles typically through binding of the 3′-untranslated region of mRNA. A single miRNA may influence several signaling pathways associated with cardiac remodeling by targeting multiple genes. Pulmonary hypertension (PH) is a rare disorder characterized by progressive obliteration of pulmonary (micro) vasculature that results in elevated vascular resistance, leading to right ventricular hypertrophy (RVH) and RV failure. The pathology of PH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC) dysfunction and pulmonary arterial smooth muscle cell (PASMC) proliferation. There is no cure for this disease. Thus, novel intervention pathways that govern PH induced RVH may result in new treatment modalities. Current therapies are limited to reverse the vascular remodeling. Recent studies have demonstrated the roles of various miRNAs in the pathogenesis of PH and pulmonary disorders. This review provides an overview of recent discoveries on the role of miRNAs in the pathogenesis of PH and discusses the potential for miRNAs as therapeutic targets and biomarkers of PH at clinical setting.


Sign in / Sign up

Export Citation Format

Share Document