scholarly journals MDM2 antagonist nutlin-3 is a potent inducer of apoptosis in pediatric acute lymphoblastic leukemia cells with wild-type p53 and overexpression of MDM2

Leukemia ◽  
2008 ◽  
Vol 22 (4) ◽  
pp. 730-739 ◽  
Author(s):  
L Gu ◽  
N Zhu ◽  
H W Findley ◽  
M Zhou
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4277-4277
Author(s):  
Lubing Gu ◽  
Ningxi Zhu ◽  
Harry W. Findley ◽  
Muxiang Zhou

In pediatric acute lymphoblastic leukemia (ALL), overexpression of MDM2 by leukemic cells is typically associated with a wild-type (wt) p53 phenotype and chemoresistance. A recently-developed small-molecule antagonist of MDM2, nutlin-3, inhibits the MDM2-p53 interaction, resulting in induction of p53 activity and apoptosis. In the present study, we evaluated the cytotoxic effect of nutlin-3 on ALL cells with different p53 status and MDM2 expression, using 18 cell lines and 30 primary leukemia samples. We found that both ALL cell lines and primary ALL samples with wt-p53 are sensitive to nutlin-3. No cytotoxic effect of nutlin-3 was detected in ALL cells with either p53-mutant or null phenotypes. In wt-p53 ALL cells, there was a significant positive correlation between MDM2 expression levels and sensitivity to nutlin-3. Nutlin-3-induced cell death was mediated by p53-induced activation of pro-apoptotic proteins and by p53-induced repression of the anti-apoptotic protein survivin. Because p53 function is inhibited by MDM2 in chemoresistant, MDM2-overexpressing ALL cells, potent killing of these cells by nutlin-3 suggests that this agent may be a novel therapeutic for refractory ALL.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2574-2574
Author(s):  
Ilaria Iacobucci ◽  
Federica Cattina ◽  
Silvia Pomella ◽  
Annalisa Lonetti ◽  
Anna Ferrari ◽  
...  

Abstract Abstract 2574 Recently, using genome-wide single nucleotide polymorphism arrays and gene candidate deep exon sequencing, we identified lesions in CDKN2A gene, encoding p16/INK4A and p14/ARF tumor suppressors, in 27% (32/117) adult newly diagnosed Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) patients and in 47% (14/30) relapsed cases. Clinically, in our cohort CDKN2A deletions were associated by univariate analysis to a worse outcome in terms of overall survival (OS), disease-free survival (DFS) and cumulative incidence of relapse (CIR) (OS: 27.7 vs 38.2 months, p = 0.0206; DFS: 10.1 vs. 56.1 months, p = 0.0010; CIR: 73.3 vs 38.1, p = 0.0014). Noteworthy, the negative prognostic impact of CDKN2A deletion on DFS was also confirmed by the multivariate analysis (p = 0.0051). These results showed that there are genetically distinct Ph+ ALL patients with a different risk of leukemia relapse and that testing for CDKN2A alterations at diagnosis may help in risk stratification. Furthermore, since the loss of CDKN2A eliminates the critical tumor surveillance mechanism and allows proliferation and tumor cell growth by the action of MDM2, a negative regulator of p53, we investigated the preclinical activity of the MDM2 antagonist RG7112 in primary B-ALL patient samples and leukemic cell line models. BV-173, SUPB-15 and K562 Ph+ cell lines were incubated with increasing concentration of RG7112 (0.5–10 μM) and its inactive enantiomer for 24, 48 and 72 hours (hrs). MDM2 inhibition by RG7112 resulted in a dose and time-dependent cytotoxicity with IC50 (24 hrs) of 2 μM for BV-173 and SUPB-15 which harbor homozygous deletion of CDKN2A but wild-type p53. No significant changes in cell viability were observed in K562 p53-null cell line after incubation with RG7112. The time and dose-dependent reduction in cell viability were confirmed in primary blast cells from a Ph+ ALL patient with the T315I Bcr-Abl kinase domain mutation found to be insensitive to the available tyrosine kinase inhibitors and from a t(4;11)-positive ALL patient (IC50 at 24 hrs equal to 2 μM). Consistent with the results of cell viability, Annexin V/Propidium Iodide analysis showed a significant increase in apoptosis after 24 hrs in BV-173, SUPB-15 and in primary leukemia blasts, whereas no apoptosis was observed in K562 cells. To examine the possible mechanisms underlying RG7112-mediated cell death, western blot analysis was performed. Protein levels of p53, p21 (an important mediator of p53-dependent cell cycle arrest), cleaved caspase-3 and caspase-9 proteins increased upon treatment with RG7112 after 24 hrs of incubation with concentrations equal to the IC50. These data demonstrate the ability of RG7112 to activate the intrinsic apoptotic pathway by a p53-dependent mechanism. In order to better elucidate the implications of p53 activation and to identify biomarkers of clinical activity, gene expression profiling analysis (Affymetrix GeneChip Human Gene 1.0 ST) was next performed, comparing sensitive cell lines (BV-173 and SUPB-15) after 24 hrs exposure to 2 μM RG7112 and their untreated counterparts (DMSO 0.1%). A total of 621 genes (48% down-regulated vs 52% up-regulated) were differentially expressed (p < 0.05). They include genes involved in cell cycle and apoptosis control (e.g. Histone H1, TOP2, GAS41, H2AFZ) and in the down-regulation of the Hedgehog signaling (e.g. BMI1, BMP7, CDKN1C, POU3F1, CTNNB1, PTCH2) with a strong repression of stemness genes and re-activation of INK4/ARF as illustrated in Figure 1. Actually, both GAS41 (growth-arrest specific 1 gene) and BMI1 (a polycomb ring-finger oncogene) are repressors of INK4/ARF and p21 and their aberrant expression has found to contribute to stem cell state in tumor cells. In our data they were strongly down-regulated (fold-change −1.35 and −1.11, respectively; p-value 0.02 and 0.03, respectively) after in vitro treatment as compared to control cells, suggesting that these genes have a potential as new biomarkers of activity. In conclusion, inhibition of the p53–MDM2 interaction by RG7112 can activate the p53 pathway, resulting in apoptosis and inhibition of stemness genes in B-ALL with wild-type p53. Our findings provide a strong rational for further clinical investigation of RG7112 in Ph+ ALL. Supported by: ELN, AIL, AIRC, Fondazione Del Monte di Bologna e Ravenna, FIRB 2006, Ateneo RFO grants, Project of integrated program, Programma di Ricerca Regione–Università 2007–2009. Disclosures: Baccarani: Novartis: Consultancy; Bristol Myers Squibb: Consultancy; Novartis: Honoraria; Bristol Myers Squibb: Honoraria; Pfizer: Honoraria; Ariad: Honoraria. Martinelli:Novartis: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Pfizer: Consultancy.


Blood ◽  
2015 ◽  
Vol 125 (2) ◽  
pp. 273-283 ◽  
Author(s):  
Duohui Jing ◽  
Vivek A. Bhadri ◽  
Dominik Beck ◽  
Julie A. I. Thoms ◽  
Nurul A. Yakob ◽  
...  

Key Points The glucocorticoid receptor coordinately regulates the antiapoptotic BCL2 and proapoptotic BIM genes in pediatric ALL cells in vivo. GR binding at a novel intronic region is associated with BIM transcription and dexamethasone sensitivity in pediatric ALL cells in vivo.


2010 ◽  
Vol 9 (1) ◽  
pp. 284 ◽  
Author(s):  
Alex H Beesley ◽  
Janelle L Rampellini ◽  
Misty-Lee Palmer ◽  
Jasmin YS Heng ◽  
Amy L Samuels ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 272-272 ◽  
Author(s):  
Esmé Waanders ◽  
Vincent H.J. van der elden ◽  
Ellen van der Schoot ◽  
Frank N. van Leeuwen ◽  
Simon V. van Reijmersdal ◽  
...  

Abstract Abstract 272 The response to therapy as determined by minimal residual disease (MRD) is currently used for stratification in treatment protocols for pediatric acute lymphoblastic leukemia (ALL). Even though MRD classification clearly identifies patients at low or at high risk for relapse, it also results in a large intermediate group (50 to 60% of patients), which still contains approximately half of all relapse cases. To improve risk stratification, we evaluated the added value of the IKZF1 alteration status, recently identified as a prognostic factor, in precursor-B-ALL patients. In an unbiased cohort of 131 uniformly treated precursor-B-ALL patients, we determined MRD levels at 42 and 84 days after treatment initiation using RQ-PCR analysis of Ig/TCR rearrangements. Based on these levels, patients were divided into three groups: MRD-Low (MRD-L), MRD-Medium (MRD-M) and MRD-High (MRD-H). IKZF1 alterations at diagnosis were determined using multiplex ligation-dependent probe amplification and genomic sequencing. We confirmed the strong prognostic significance of MRD classification, which was independent of IKZF1 status. Importantly, in the large MRD-M group (n=81; 62% of patients) containing 46% of the relapsed patients, IKZF1 alteration status identified 8 out of 11 relapsed patients (72%). The 9 year relapse-free survival (RFS) for IKZF1 mutated patients in this MRD-M group was 27% compared to 96% for patients wild-type for IKZF1 (P<0.001). Based on these results, we defined a new parameter integrating both MRD and IKZF1 status. The favorable risk group included patients classified as MRD-L or MRD-M with IKZF1 wild-type (n=104; 5 relapses), whereas the high risk group consisted of MRD-H patients or MRD-M patients with IKZF1 alterations (n=27; 19 relapses). This parameter showed stronger prognostic value than each of the established risk factors alone (Hazard Ratio[95%CI]: 24.98[8.29-75.31]). Importantly, whereas MRD and IKZF1 status alone identified only 46% and 54% of relapses, respectively, their integrated use allowed prediction of 79% of all relapses with 93% specificity. In conclusion: The use of a new parameter integrating MRD and IKZF1 status results in an unprecedented sensitivity in upfront relapse prediction and has a high potential for future risk stratification, particularly for patients originally classified as non-high-risk, such as the large group of MRD-M patients. Disclosures: No relevant conflicts of interest to declare.


Haematologica ◽  
2013 ◽  
Vol 98 (10) ◽  
pp. 1539-1546 ◽  
Author(s):  
S. A. Hartsink-Segers ◽  
C. Exalto ◽  
M. Allen ◽  
D. Williamson ◽  
S. C. Clifford ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1925-1925
Author(s):  
Irene Homminga ◽  
Christian M Zwaan ◽  
Chantal Y. Manz ◽  
Shanta Bantia ◽  
Cynthia Parker ◽  
...  

Abstract Purine nucleotide phosphorylase (PNP) deficiency in humans is associated with elevated dGuo plasma levels. This results in the intra-cellular conversion of dGuo into dGTP, following 3 consecutive kinase steps and depletion of T-cells resulting in immune deficiency. This T-cell toxicity provided the rationale for the development of deoxyguanosine analogues as potential therapeutic compounds for T-cell malignancies. Forodesine (BCX-1777; BioCryst-Mundipharma) is an efficient blocker of PNP activity. Forodesine facilitates the conversion of dGuo into dGTP raising the intracellular dGTP pool. AraG (9-b-D-arabinofuranosyl-guanine) is a compound that is resistant to PNP-mediated degradation resulting in phosphorylation of AraG into AraGTP. AraGTP becomes incorporated in the DNA and blocks DNA synthesis resulting in apoptosis. In a phase II clinical trial, the AraG prodrug Nelarabine enforced a complete remission rate of 55% for pediatric T-ALL patients at 1st relapse. (Berg, JCO 2005). Clinical data of forodesine treatment in pediatric ALL patients are not yet available. The cytotoxic effect of Forodesine was investigated on primary leukemia cells from newly diagnosed pediatric acute lymphoblastic leukemia (ALL) patients in-vitro. Cells were incubated with a fixed concentration of Forodesine (1μM) in the presence of increasing concentrations of dGuo (0.001–50μM). The dGTP levels under conditions where PNPactivity was completely blocked was monitored. Incubation of primary leukemic cells obtained from 6 pediatric ALL patients (4 T-ALL, 2 B-ALL) with 10μM dGuo results in rapid dGuo degradation (t½&lt;4hrs) by the PNP enzyme that is completely abolished by the addition of 1μM of Forodesine. Cells consequently accumulate dGTP levels upon Forodesine treatment to a median 7.9 (range 0.5–378 fold) that is comparable between T-ALL (n=31) and B-ALL (n=11) patient samples. This reflects equal intrinsic ability of de-novo nucleotide synthesis for both T-ALL and B-ALL cells. In accordance with T-cell selective toxicity, T-ALL cells were more sensitive to Forodesine/ dGuo treatment (median T-ALL LC50 value: 1.1μM dGuo/1μM Forodesine, n=27, p=0.001) compared to B-ALL cells, which had a median LC50 value of 8.8μM dGuo/1μM Forodesine (n=30). All patients that responded demonstrated dGTP accumulation (1.5– 222.1 fold), but the magnitude of dGTP accumulation did not relate to Forodesine/dGuo toxicity. Studying in-vitro responsiveness to AraG, T-ALL cells were more sensitive compared to B-ALL cells (p=0.0002) with a median AraG LC50 value of 20.5μM for T-ALL samples (n=24) versus 48.3μM for B-ALL samples (n=20). However, TELAML1 negative B-ALL cases were sensitive to AraG where as TELAML1 positive B-ALL cases were remarkable insensitive to AraG treatment (median LC50 value &gt;50μM, n=9). No correlation was identified between in-vitro Forodesine/dGuo and AraG cytotoxicities. Most patient samples that displayed AraG resistance still responded to Forodesine/dGuo treatment. In contrast, AraG cytotoxicity strongly correlated with AraC cytotoxicity (r2=0.71, p&lt;0.0001). In conclusion, T-ALL cells are sensitive to Forodesine/dGuo treatment in-vitro in contrast to B-ALL cells that have nearly 8 fold higher LC50 values. In-vitro Forodesine mediated cytotoxicity seems more potent in pediatric ALL than AraG treatment. Resistance to AraG treatment does not preclude responsiveness to Forodesine treatment and vice versa, indicating that Forodesine and AraG rely on different cellular mechanisms for cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document