scholarly journals Abnormal gait function could be used to screen for autism

2007 ◽  
Vol 3 (1) ◽  
pp. 5-5 ◽  
Keyword(s):  
Author(s):  
Justus F. Lehmann ◽  
Barbara J. de Lateur ◽  
Robert Price
Keyword(s):  

2018 ◽  
Vol 27 (2) ◽  
pp. 1007-1015
Author(s):  
Gwon-Min Kim ◽  
Jong-Hwan Park ◽  
Sang-Myung Chun ◽  
Yoo-Chan Kwon ◽  
Bo-Kun Kim ◽  
...  

Children ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 81
Author(s):  
Su Min Son ◽  
Min Cheol Chang

We describe the successful application of hinged ankle−foot orthoses (AFOs) in a cerebral palsied (CP) patient with gait instability due to a disrupted medial lemniscus (ML). The patient was a 27-month-old male CP child with gait instability who presented with reduced knee flexion and ankle dorsiflexion, with severe genu recurvatum on his right lower extremity during gait. The patient had no motor weakness or spasticity. Conventional magnetic resonance imaging (MRI) revealed no definite abnormal lesion. However, diffusion tensor tractography (DTT) showed disruption of the left ML, consistent with right hemiplegic symptoms. The integrity of the major motor-related neural tracts, including the corticospinal and corticoreticulospinal tracts, was preserved. We considered that the patient’s abnormal gait pattern was related to the disrupted ML state. We applied hinged AFOs, which immediately resulted in a significantly stabilized gait. The angles of knee flexion and ankle dorsiflexion increased. Our findings indicate that the application of hinged AFOs could be a useful therapeutic option for CP patients with gait instability related to ML disruption. In addition, we showed that DTT is a useful tool for identifying the causative brain pathology in CP patients, especially when conventional brain MRIs show no specific lesion.


2021 ◽  
Vol 86 ◽  
pp. 144-149
Author(s):  
Jessie Mackay ◽  
Pam Thomason ◽  
Morgan Sangeux ◽  
Elyse Passmore ◽  
Kate Francis ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 412
Author(s):  
Daniel Gomez-Vargas ◽  
Felipe Ballen-Moreno ◽  
Patricio Barria ◽  
Rolando Aguilar ◽  
José M. Azorín ◽  
...  

Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which impede the independence to execute different Activities of Daily Living (ADLs). From the fundamental role of the ankle in walking, Powered Ankle-Foot Orthoses (PAFOs) have been developed to enhance the users’ gait patterns, and hence their quality of life. Ten patients who suffered a stroke used the actuation system of the T-FLEX exoskeleton triggered by an inertial sensor on the foot tip. The VICONmotion capture system recorded the users’ kinematics for unassisted and assisted gait modalities. Biomechanical analysis and usability assessment measured the performance of the system actuation for the participants in overground walking. The biomechanical assessment exhibited changes in the lower joints’ range of motion for 70% of the subjects. Moreover, the ankle kinematics showed a correlation with the variation of other movements analyzed. This variation had positive effects on 70% of the participants in at least one joint. The Gait Deviation Index (GDI) presented significant changes for 30% of the paretic limbs and 40% of the non-paretic, where the tendency was to decrease. The spatiotemporal parameters did not show significant variations between modalities, although users’ cadence had a decrease of 70% of the volunteers. Lastly, the satisfaction with the device was positive, the comfort being the most user-selected aspect. This article presents the assessment of the T-FLEX actuation system in people who suffered a stroke. Biomechanical results show improvement in the ankle kinematics and variations in the other joints. In general terms, GDI does not exhibit significant increases, and the Movement Analysis Profile (MAP) registers alterations for the assisted gait with the device. Future works should focus on assessing the full T-FLEX orthosis in a larger sample of patients, including a stage of training.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4874
Author(s):  
San-Ha Kim ◽  
Jae-Young Han ◽  
Min-Keun Song ◽  
In-Sung Choi ◽  
Hyeng-Kyu Park

Spinocerebellar ataxia (SCA) is a hereditary neurodegenerative disorder that presents as ataxia. Due to the decline in balance, patients with SCA often experience restricted mobility and a decreased quality of life. Thus, many studies have emphasized the importance of physiotherapies, including gait training, in SCA patients. However, few studies have examined the effectiveness of robotic gait training in SCA. Here, we report the therapeutic outcomes of exoskeleton-assisted gait training in a patient with SCA. A 23-year-old woman with SCA participated in a gait training program using a powered lower-limb robotic exoskeleton, ANGELLEGS. The 8-week training program consisted of standing training, weight-shifting exercises, and gait training. Several measures of general function, balance, gait, and cardiopulmonary function were applied before, after, and 4 weeks after the program. After the program, overall improvements were found on scales measuring balance and gait function, and these improvements remained at 4 weeks after the program. Cardiopulmonary function was also improved 4 weeks after the program. Robotic exoskeleton gait training can be a beneficial option for training balance, gait, and cardiopulmonary function in SCA.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Toshiyuki Itai ◽  
Satoko Miyatake ◽  
Taku Hatano ◽  
Nobutaka Hattori ◽  
Atsuko Ohno ◽  
...  

AbstractWe describe two patients with NSD1 deletion, who presented with early-onset, or recurrent cerebrovascular diseases (CVDs). A 39-year-old female showed developmental delay and abnormal gait in infancy, and developed slowly-progressive intellectual disability and movement disorders. Brain imaging suggested recurrent parenchymal hemorrhages. A 6-year-old male had tremor as a neonate and brain imaging revealed subdural hematoma and brain contusion. This report suggests possible involvement of CVDs associated with NSD1 deletion.


Sign in / Sign up

Export Citation Format

Share Document