scholarly journals The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke

2021 ◽  
Vol 11 (4) ◽  
pp. 412
Author(s):  
Daniel Gomez-Vargas ◽  
Felipe Ballen-Moreno ◽  
Patricio Barria ◽  
Rolando Aguilar ◽  
José M. Azorín ◽  
...  

Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which impede the independence to execute different Activities of Daily Living (ADLs). From the fundamental role of the ankle in walking, Powered Ankle-Foot Orthoses (PAFOs) have been developed to enhance the users’ gait patterns, and hence their quality of life. Ten patients who suffered a stroke used the actuation system of the T-FLEX exoskeleton triggered by an inertial sensor on the foot tip. The VICONmotion capture system recorded the users’ kinematics for unassisted and assisted gait modalities. Biomechanical analysis and usability assessment measured the performance of the system actuation for the participants in overground walking. The biomechanical assessment exhibited changes in the lower joints’ range of motion for 70% of the subjects. Moreover, the ankle kinematics showed a correlation with the variation of other movements analyzed. This variation had positive effects on 70% of the participants in at least one joint. The Gait Deviation Index (GDI) presented significant changes for 30% of the paretic limbs and 40% of the non-paretic, where the tendency was to decrease. The spatiotemporal parameters did not show significant variations between modalities, although users’ cadence had a decrease of 70% of the volunteers. Lastly, the satisfaction with the device was positive, the comfort being the most user-selected aspect. This article presents the assessment of the T-FLEX actuation system in people who suffered a stroke. Biomechanical results show improvement in the ankle kinematics and variations in the other joints. In general terms, GDI does not exhibit significant increases, and the Movement Analysis Profile (MAP) registers alterations for the assisted gait with the device. Future works should focus on assessing the full T-FLEX orthosis in a larger sample of patients, including a stage of training.

2020 ◽  
Author(s):  
Daniel Gomez-Vargas ◽  
Felipe Ballen-Moreno ◽  
Patricio Barria ◽  
Rolando Aguilar ◽  
José M. Azorín ◽  
...  

Abstract Background: Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which harm the independence to execute different Activities of Daily Living (ADL). From the fundamental role of the ankle in walking, Active Ankle-Foot Orthoses (AAFOs) have been developed to enhance the users' gait patterns, and hence, their quality of life.Methods: Ten patients who suffered stroke used the actuation system of the T-FLEX orthosis triggered by an inertial sensor on the foot tip. The VICON motion capture system recorded the users' kinematics for unassisted and assisted gait modalities. Biomechanical analysis and usability assessment measured the performance of the system actuation for the participants in overground walking. Results: The biomechanical assessment exhibited changes in the range of motion of the lower joints for $70\%$ of the subjects. Moreover, the ankle kinematics showed a correlation with the variation of other movements analyzed. This variation had positive effects on 70\% of the participants in at least one joint. The Gait Deviation Index (GDI) presented significant changes for 30\% of the paretic limbs, where one volunteer increased this index in 14\%. The spatiotemporal parameters did not show significant variations between modalities, although users' cadence had a decrease. Lastly, the satisfaction with the device was positive, being the comfort the most users-selected aspect.Conclusions: This article presented the assessment of the T-FLEX actuation system in people who suffered stroke. Biomechanical results showed improvement in the ankle kinematic and variation in the other joints. In general terms, GDI did not exhibit significant changes, and Movement Analysis Profile (MAP) registered the main movements altered by the device. Future works should focus on assessing the full T-FLEX orthosis in a larger sample of patients that includes a stage of training.Trial registration: This study was registered as Preliminary Biomechanical and Usability Study of an Active Ankle-Foot Orthosis for Stroke Survivors on 30 January 2020 in Clinical Trials with the identi er No NCT04249349 (available at https://clinicaltrials.gov/ct2/show/NCT04249349).


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4580
Author(s):  
Francesco Crenna ◽  
Giovanni Battista Rossi ◽  
Marta Berardengo

Biomechanical analysis of human movement is based on dynamic measurements of reference points on the subject’s body and orientation measurements of body segments. Collected data include positions’ measurement, in a three-dimensional space. Signal enhancement by proper filtering is often recommended. Velocity and acceleration signal must be obtained from position/angular measurement records, needing numerical processing effort. In this paper, we propose a comparative filtering method study procedure, based on measurement uncertainty related parameters’ set, based upon simulated and experimental signals. The final aim is to propose guidelines to optimize dynamic biomechanical measurement, considering the measurement uncertainty contribution due to the processing method. Performance of the considered methods are examined and compared with an analytical signal, considering both stationary and transient conditions. Finally, four experimental test cases are evaluated at best filtering conditions for measurement uncertainty contributions.


2021 ◽  
Vol 65 (10) ◽  
pp. 912-921
Author(s):  
Y. Ma ◽  
K. Zhang ◽  
S. Li ◽  
L. Wang ◽  
T. Wang

2021 ◽  
Vol 8 (4) ◽  
pp. 47
Author(s):  
Micaela Porta ◽  
Massimiliano Pau ◽  
Bruno Leban ◽  
Michela Deidda ◽  
Marco Sorrentino ◽  
...  

Among the functional limitations associated with hip osteoarthritis (OA), the alteration of gait capabilities represents one of the most invalidating as it may seriously compromise the quality of life of the affected individual. The use of quantitative techniques for human movement analysis has been found valuable in providing accurate and objective measures of kinematics and kinetics of gait in individuals with hip OA, but few studies have reported in-depth analyses of lower limb joint kinematics during gait and, in particular, there is a scarcity of data on interlimb symmetry. Such aspects were investigated in the present study which tested 11 individuals with hip OA (mean age 68.3 years) and 11 healthy controls age- and sex-matched, using 3D computerized gait analysis to perform point-by-point comparisons of the joint angle trends of hip, knee, and ankle. Angle-angle diagrams (cyclograms) were also built to compute several parameters (i.e., cyclogram area and orientation and Trend Symmetry) from which to assess the degree of interlimb symmetry. The results show that individuals with hip OA exhibit peculiar gait patterns characterized by severe modifications of the physiologic trend at hip level even in the unaffected limb (especially during the stance phase), as well as minor (although significant) alterations at knee and ankle level. The symmetry analysis also revealed that the effect of the disease in terms of interlimb coordination is present at knee joint as well as hip, while the ankle joint appears relatively preserved from specific negative effects from this point of view. The availability of data on such kinematic adaptations may be useful in supporting the design of specific rehabilitative strategies during both preoperative and postoperative periods.


2021 ◽  
Vol 185 ◽  
pp. 282-291
Author(s):  
Nizam U. Ahamed ◽  
Kellen T. Krajewski ◽  
Camille C. Johnson ◽  
Adam J. Sterczala ◽  
Julie P. Greeves ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 885 ◽  
Author(s):  
Jules Gellaerts ◽  
Evgeny Bogdanov ◽  
Farzin Dadashi ◽  
Benoit Mariani

2017 ◽  
Vol 55 ◽  
pp. 145-155 ◽  
Author(s):  
Andrea Ancillao ◽  
Marjolein M. van der Krogt ◽  
Annemieke I. Buizer ◽  
Melinda M. Witbreuk ◽  
Paolo Cappa ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 141 ◽  
Author(s):  
Rob Van der Straaten ◽  
Amber K. B. D. Bruijnes ◽  
Benedicte Vanwanseele ◽  
Ilse Jonkers ◽  
Liesbet De Baets ◽  
...  

This study evaluates the reliability and agreement of the 3D range of motion (ROM) of trunk and lower limb joints, measured by inertial measurement units (MVN BIOMECH Awinda, Xsens Technologies), during a single leg squat (SLS) and sit to stand (STS) task. Furthermore, distinction was made between movement phases, to discuss the reliability and agreement for different phases of both movement tasks. Twenty healthy participants were measured on two testing days. On day one, measurements were conducted by two operators to determine the within-session and between-operator reliability and agreement. On day two, measurements were conducted by the same operator, to determine the between-session reliability and agreement. The SLS task had lower within-session reliability and agreement compared with between-session and between-operator reliability and agreement. The reliability and agreement of the hip, knee, and ankle ROM in the sagittal plane were good for both phases of the SLS task. For both phases of STS task, within-session reliability and agreement were good, and between-session and between-operator reliability and agreement were lower in all planes. As both tasks are physically demanding, differences may be explained by inconsistent movement strategies. These results show that inertial sensor systems show promise for use in further research to investigate (mal)adaptive movement strategies.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 82 ◽  
Author(s):  
Udeni Jayasinghe ◽  
William S. Harwin ◽  
Faustina Hwang

Inertial sensors are a useful instrument for long term monitoring in healthcare. In many cases, inertial sensor devices can be worn as an accessory or integrated into smart textiles. In some situations, it may be beneficial to have data from multiple inertial sensors, rather than relying on a single worn sensor, since this may increase the accuracy of the analysis and better tolerate sensor errors. Integrating multiple sensors into clothing improves the feasibility and practicality of wearing multiple devices every day, in approximately the same location, with less likelihood of incorrect sensor orientation. To facilitate this, the current work investigates the consequences of attaching lightweight sensors to loose clothes. The intention of this paper is to discuss how data from these clothing sensors compare with similarly placed body worn sensors, with additional consideration of the resulting effects on activity recognition. This study compares the similarity between the two signals (body worn and clothing), collected from three different clothing types (slacks, pencil skirt and loose frock), across multiple daily activities (walking, running, sitting, and riding a bus) by calculating correlation coefficients for each sensor pair. Even though the two data streams are clearly different from each other, the results indicate that there is good potential of achieving high classification accuracy when using inertial sensors in clothing.


Sign in / Sign up

Export Citation Format

Share Document