scholarly journals MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α regulation

Oncogenesis ◽  
2016 ◽  
Vol 5 (5) ◽  
pp. e224-e224 ◽  
Author(s):  
L Liu ◽  
Y Wang ◽  
R Bai ◽  
K Yang ◽  
Z Tian

Abstract Deregulation of microRNAs in human malignancies has been well documented, among which microRNA-186 (miR-186) has an antiproliferative role in some carcinomas. Here we demonstrate that low expression of miR-186 facilitates aerobic glycolysis in gastric cancer. MiR-186 suppresses cell proliferation induced by hypoxia inducible factor 1 alpha (HIF-1α) in gastric cancer cell lines MKN45 and SGC7901. Cellular glycolysis, including cellular glucose uptake, lactate, ATP/ADP and NAD+/NADH ratios, are also inhibited by miR-186. The negative regulation of miR-186 on HIF-1α effects its downstream targets, including programmed death ligand 1 and two glycolytic key enzymes, hexokinase 2 and platelet-type phosphofructokinase. The antioncogenic effects of miR-186 are proved by in vivo xenograft tumor experiment. The results demonstrate that the miR-186/HIF-1α axis has an antioncogenic role in gastric cancer.

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
An Yang ◽  
Xin Liu ◽  
Ping Liu ◽  
Yunzhang Feng ◽  
Hongbo Liu ◽  
...  

Abstract Background Long noncoding RNA (lncRNA), urothelial carcinoma-associated 1 (UCA1) is aberrantly expressed in multiple cancers and has been verified as an oncogene. However, the underlying mechanism of UCA1 in the development of gastric cancer is not fully understood. In the present study, we aimed to identify how UCA1 promotes gastric cancer development. Methods The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to analyze UCA1 and myosin VI (MYO6) expression in gastric cancer. Western blot and quantitative real-time PCR (QPCR) were performed to test the expression level of the UCA1/miR-145/MYO6 axis in gastric cancer cell lines and tissues. The roles of the UCA1/miR-145/MYO6 axis in gastric cancer in vitro and in vivo were investigated by CCK-8 assay, flow cytometry, siRNAs, immunohistochemistry, and a mouse xenograft model. The targeted relationship among UCA1, miR-145, and MYO6 was predicted using LncBase Predicted v.2 and TargetScan online software, and then verified by luciferase activity assay and RNA immunoprecipitation. Results UCA1 expression was higher but miR-145 expression was lower in gastric cancer cell lines or tissues, compared to the adjacent normal cell line or normal tissues. Function analysis verified that UCA1 promoted cell proliferation and inhibited cell apoptosis in the gastric cancer cells in vitro and in vivo. Mechanistically, UCA1 could bind directly to miR-145, and MYO6 was found to be a downstream target gene of miR-145. miR-145 mimics or MYO6 siRNAs could partly reverse the effect of UCA1 on gastric cancer cells. Conclusions UCA1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-145 to upregulate MYO6 expression in gastric cancer, indicating that the UCA1/miR-145/MYO6 axis may serve as a potential therapeutic target for gastric cancer.


2016 ◽  
Vol 5 (6) ◽  
pp. 781-788 ◽  
Author(s):  
Ning Liu ◽  
Jing Lv ◽  
Weiwei Qi ◽  
Libin Sun ◽  
Jing Guo ◽  
...  

2021 ◽  
Vol 14 (3) ◽  
pp. 230
Author(s):  
Waseem El-Huneidi ◽  
Khuloud Bajbouj ◽  
Jibran Sualeh Muhammad ◽  
Arya Vinod ◽  
Jasmin Shafarin ◽  
...  

Gastric cancer is among the most common malignancies worldwide. Due to limited availability of therapeutic options, there is a constant need to find new therapies that could target advanced, recurrent, and metastatic gastric cancer. Carnosic acid is a naturally occurring polyphenolic abietane diterpene derived from Rosmarinus officinalis and reported to have numerous pharmacological effects. In this study, the cytotoxicity assay, Annexin V-FITC/PI, caspases 3, 8, and 9, cell cycle analysis, and Western blotting were used to assess the effect of carnosic acid on the growth and survival of human gastric cancer cell lines (AGS and MKN-45). Our findings showed that carnosic acid inhibited human gastric cancer cell proliferation and survival in a dose-dependent manner. Additionally, carnosic acid is found to inhibit the phosphorylation/activation of Akt and mTOR. Moreover, carnosic acid enhanced the cleavage of PARP and downregulated survivin expression, both being known markers of apoptosis. In conclusion, carnosic acid exhibits antitumor activity against human gastric cancer cells via modulating the Akt-mTOR signaling pathway that plays a crucial role in gastric cancer cell proliferation and survival.


Sign in / Sign up

Export Citation Format

Share Document