scholarly journals Leptin regulates exon-specific transcription of the Bdnf gene via epigenetic modifications mediated by an AKT/p300 HAT cascade

Author(s):  
Chen Li ◽  
Fantao Meng ◽  
Yun Lei ◽  
Jing Liu ◽  
Jing Liu ◽  
...  

Abstract Leptin is an adipocyte-derived hormone with pleiotropic functions affecting appetite and mood. While leptin’s role in the regulation of appetite has been extensively studied in hypothalamic neurons, its function in the hippocampus, where it regulates mood-related behaviors, is poorly understood. Here, we show that the leptin receptor (LepRb) colocalizes with brain-derived neurotrophic factor (BDNF), a key player in the pathophysiology of major depression and the action of antidepressants, in the dentate gyrus of the hippocampus. Leptin treatment increases, whereas deficiency of leptin or leptin receptors decreases, total Bdnf mRNA levels, with distinct expression profiles of specific exons, in the hippocampus. Epigenetic analyses reveal that histone modifications, but not DNA methylation, underlie exon-specific transcription of the Bdnf gene induced by leptin. This is mediated by stimulation of AKT signaling, which in turn activates histone acetyltransferase p300 (p300 HAT), leading to changes in histone H3 acetylation and methylation at specific Bdnf promoters. Furthermore, deletion of Bdnf in the dentate gyrus, or specifically in LepRb-expressing neurons, abolishes the antidepressant-like effects of leptin. These findings indicate that leptin, acting via an AKT-p300 HAT epigenetic cascade, induces exon-specific Bdnf expression, which in turn is indispensable for leptin-induced antidepressant-like effects.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mi Kyoung Seo ◽  
Young Hoon Kim ◽  
Roger S. McIntyre ◽  
Rodrigo B. Mansur ◽  
Yena Lee ◽  
...  

Recent studies have shown that antipsychotic drugs have epigenetic effects. However, the effects of antipsychotic drugs on histone modification remain unclear. Therefore, we investigated the effects of antipsychotic drugs on the epigenetic modification of the BDNF gene in the rat hippocampus. Rats were subjected to chronic restraint stress (6 h/d for 21 d) and then were administered with either olanzapine (2 mg/kg) or haloperidol (1 mg/kg). The levels of histone H3 acetylation and MeCP2 binding at BDNF promoter IV were assessed with chromatin immunoprecipitation assays. The mRNA levels of total BDNF with exon IV, HDAC5, DNMT1, and DNMT3a were assessed with a quantitative RT-PCR procedure. Chronic restraint stress resulted in the downregulation of total and exon IV BDNF mRNA levels and a decrease in histone H3 acetylation and an increase in MeCP2 binding at BDNF promoter IV. Furthermore, there were robust increases in the expression of HDAC5 and DNMTs. Olanzapine administration largely prevented these changes. The administration of haloperidol had no effect. These findings suggest that the antipsychotic drug olanzapine induced histone modification of BDNF gene expression in the hippocampus and that these epigenetic alterations may represent one of the mechanisms underlying the actions of antipsychotic drugs.


Endocrinology ◽  
2005 ◽  
Vol 146 (9) ◽  
pp. 3868-3874 ◽  
Author(s):  
S. R. Ladyman ◽  
D. R. Grattan

Abstract Pregnancy in the rat is a state of leptin resistance associated with impaired leptin signal transduction in the hypothalamus. The aim of this study was to determine whether this leptin-resistant state is mediated by a change in the level of leptin receptors in the hypothalamus. Real-time RT-PCR was used to determine levels of mRNA for the various leptin receptor isoforms in a number of microdissected hypothalamic nuclei and the choroid plexus. To investigate the functional activation of the leptin receptor, immunohistochemistry for phosphorylated signal transducer and activator of transcription 3 (pSTAT3) was examined in the arcuate nucleus and the ventromedial nucleus of the hypothalamus (VMH) of fasted diestrous and d-14 pregnant rats after an intracerebroventricular (i.c.v.) injection of either leptin (4 μg) or vehicle. A significant reduction of Ob-Rb mRNA levels was observed in the VMH during pregnancy compared with the nonpregnant controls. Furthermore, in pregnant rats the number of cells positive for leptin-induced pSTAT3 in the VMH was greatly reduced during pregnancy compared with nonpregnant rats. There were no differences in the level of Ob-Rb mRNA or in the number of leptin-induced pSTAT3-positive cells in the arcuate nucleus of nonpregnant and pregnant rats. These data implicate the VMH as a key hypothalamic site involved in pregnancy-induced leptin resistance. There were also reduced levels of mRNA for Ob-Ra, a proposed leptin transporter molecule, in the choroid plexus on d 7 and 21 of pregnancy. Hence, diminished transport of leptin into the brain may also contribute to pregnancy-induced leptin resistance.


2003 ◽  
Vol 178 (2) ◽  
pp. 225-232 ◽  
Author(s):  
RG Denis ◽  
C Bing ◽  
EK Naderali ◽  
RG Vernon ◽  
G Williams

We investigated the effects of lactation on diurnal changes in serum leptin and hypothalamic expression of the leptin receptor isoforms, Ob-Ra, -Rb, -Rc, -Re and -Rf in rats. In non-lactating rats, serum leptin concentration was increased at night while hypothalamic mRNA levels of Ob-Rb, -Rc and -Re decreased; by contrast, expression of Ob-Ra and Ob-Rf was unchanged at night. There were significant negative correlations between serum leptin and mRNA expression of Ob-Rb (P<0.001) and Ob-Re (P<0.05), which were independent of time of day. In lactating rats, the nocturnal rise in serum leptin was attenuated. Daytime hypothalamic Ob-Rb mRNA levels were significantly lower than in non-lactating controls, and the normal nocturnal decreases in expression of Ob-Rb, -Rc and -Re were lost. The relationship between serum leptin and Ob-Re expression was not changed by lactation. Lactation had no effect on the expression of Ob-Ra mRNA in the hypothalamus. Decreased daytime Ob-Rb expression could lead to reduced hypothalamic sensitivity to leptin, and thus contribute to increased daytime appetite in lactating rats. Moreover, maintaining high levels of Ob-Re expression could, by increasing hypothalamic leptin-binding protein concentration and reducing local leptin bioavailability, further accentuate hyperphagia. Thus, selective changes in expression of specific isoforms of the leptin receptor may contribute to the hyperphagia of lactation in rats.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Klaudia Dopytalska ◽  
Agnieszka Baranowska-Bik ◽  
Marek Roszkiewicz ◽  
Wojciech Bik ◽  
Irena Walecka

Abstract Leptin is an adipokine, adipocyte-derived compound, which acts both as a hormone and cytokine. It is mainly synthesized by adipocytes of white adipose tissue. Leptin possesses pleiotropic functions including, among others, stimulation of angiogenesis and production of proinflammatory cytokines. The various types of leptin activity are related to the wide distribution of leptin receptors. This adipokine acts by activating intracellular signaling cascades such as JAKs (Janus kinases), STATs (signal transducers and activators of transcription), and others. In a course of obesity, an increased serum level of leptin coexists with tissue receptor resistance. It has been reported that enhanced leptin levels, leptin receptor impairment, and dysfunction of leptin signaling can influence skin and hair. The previous studies revealed the role of leptin in wound healing, hair cycle, and pathogenesis of skin diseases like psoriasis, lupus erythematosus, and skin cancers. However, the exact mechanism of leptin’s impact on the skin is still under investigation. Herein, we present the current knowledge concerning the role of leptin in psoriasis and selected skin diseases.


2021 ◽  
Author(s):  
Mei Zheng ◽  
Jingchen Lin ◽  
Xingbei Liu ◽  
Wei Chu ◽  
Jinpeng Li ◽  
...  

Abstract Polyploidy occurs prevalently and plays an important role during plant speciation and evolution. This phenomenon suggests polyploidy could develop novel features that enable them to adapt wider range of environmental conditions compared with diploid progenitors. Bread wheat (Triticum aestivum L., BBAADD) is a typical allohexaploid species and generally exhibits greater salt tolerance than its tetraploid wheat progenitor (BBAA). However, little is known about the underlying molecular basis and the regulatory pathway of this trait. Here, we show that the histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Salinity-induced TaHAG1 expression was associated with tolerance variation in polyploidy wheat. Overexpression, silencing and CRISPR-mediated knockout of TaHAG1 validated the role of TaHAG1 in salinity tolerance of wheat. TaHAG1 contributed to salt tolerance by modulating ROS production and signal specificity. Moreover, TaHAG1 directly targeted a subset of genes that are responsible for hydrogen peroxide production, and enrichment of TaHAG1 triggered increased H3 acetylation and transcriptional upregulation of these loci under salt stress. In addition, we found the salinity-induced TaHAG1-mediated ROS production pathway is involved in salt tolerance difference of wheat accessions with varying ploidy. Our findings provide insight into the molecular mechanism of how an epigenetic regulatory factor facilitates adaptability of polyploidy wheat and highlights this epigenetic modulator as a strategy for salt tolerance breeding in bread wheat.


2008 ◽  
Vol 86 (5) ◽  
pp. 249-256 ◽  
Author(s):  
Takashi Kubota ◽  
Itsuki Jibiki ◽  
Akira Ishikawa ◽  
Tomomi Kawamura ◽  
Sonoko Kurokawa ◽  
...  

We previously found that 20 mg/kg clozapine i.p. potentiated the excitatory synaptic responses elicited in the dentate gyrus by single electrical stimulation of the perforant path in chronically prepared rabbits. We called this phenomenon clozapine-induced potentiation and proved that it was an NMDA receptor-mediated event. This potentiation is presumably related to clozapine’s clinical effect on negative symptoms and cognitive dysfunctions in schizophrenia. In the present study, to investigate the mechanisms underlying clozapine-induced potentiation, we examined whether extracellular dopamine and 5-HT levels changed during the potentiation by using a microdialysis technique in the dentate gyrus. The extracellular concentrations of dopamine and 5-HT levels were measured every 5 min during all experiments. Extracellular 5-HT levels did not change, but dopamine levels eventually increased significantly during clozapine-induced potentiation. The increase in the dopamine levels occurred almost simultaneously with the induction of clozapine-induced potentiation. These results suggest that clozapine-induced potentiation is at least partly attributable to a dopamine-mediated potentiation of excitatory synaptic transmission. The present study implies that such phenomena occur also in the perforant path–dentate gyrus pathway.


2004 ◽  
Vol 287 (4) ◽  
pp. G875-G885 ◽  
Author(s):  
Carine Strup-Perrot ◽  
Denis Mathé ◽  
Christine Linard ◽  
Dominique Violot ◽  
Fabien Milliat ◽  
...  

Radiation enteritis, a common complication of radiation therapy for abdominal and pelvic cancers, is characterized by severe transmural fibrosis associated with mesenchymal cell activation, tissue disorganization, and deposition of fibrillar collagen. To investigate the mechanisms involved in this pathological accumulation of extracellular matrix, we studied gene expression of matrix components along with that of genes involved in matrix remodeling, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). Hybrid selection on high-density cDNA array, real-time RT-PCR, gelatin zymography and imunohistochemistry were used to characterize the mRNA expression profile, activity, and tissue location of extracellular matrix-related genes in radiation enteritis compared with healthy ileum. cDNA array analysis revealed a strong induction of genes coding for collagens I, III, IV, VI, and VIII, SPARC, and tenascin-C, extracellular-matrix degrading enzymes (MMP-1, -2, -3, -14, -18+19), and metalloproteinase inhibitors (TIMP-1, -2, plasminogen activator inhibitor-1) in radiation enteritis. This increase was correlated with the degree of infiltration of the mucosa by inflammatory cells, and the presence of differentiated mesenchymal cells in the submucosa and muscularis propria. Despite the fact that expression of collagens, MMPs, and TIMPs simultaneously increase, quantification of net collagen deposition shows an overall accumulation of collagen. Our results indicate that late radiation enteritis tissues are subjected to active process of fibrogenesis as well as fibrolysis, with a balance toward fibrogenesis. This demonstrates that established fibrotic tissue is not scarred fixed tissue but is subjected to a dynamic remodeling process.


1989 ◽  
Vol 170 (5) ◽  
pp. 1537-1549 ◽  
Author(s):  
J Bauer ◽  
T M Bauer ◽  
T Kalb ◽  
T Taga ◽  
G Lengyel ◽  
...  

IL-6 is a cytokine with pleiotropic biological functions, including induction of the hepatic acute phase response and differentiation of activated B cells into Ig-secreting plasma cells. We found that human peripheral blood monocytes express the IL-6-R, which is undetectable on the large majority of lymphocytes of healthy individuals. Stimulation of monocytes by endotoxin or IL-1 causes a rapid downregulation of IL-6-R mRNA levels and a concomitant enhancement of IL-6 mRNA expression. IL-6 itself was found to suppress the IL-6-R at high concentrations. A gradual decrease of IL-6-R mRNA levels was observed along in vitro maturation of monocytes into macrophages. We show that downregulation of IL-6-R mRNA levels by IL-1 and IL-6 is monocyte specific, since IL-6-R expression is stimulated by both IL-1 and IL-6 in cultured human primary hepatocytes. Our data indicate that under noninflammatory conditions, monocytes may play a role in binding of trace amounts of circulating IL-6. Repression of monocytic IL-6-R and stimulation of hepatocytic IL-6-R synthesis may represent a shift of the IL-6 tissue targets under inflammatory conditions.


Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1643-1649 ◽  
Author(s):  
K.H. Herzog ◽  
K. Bailey ◽  
Y.A. Barde

Using a sensitive and quantitative method, the mRNA levels of brain-derived neurotrophic factor (BDNF) were determined during the development of the chick visual system. Low copy numbers were detected, and BDNF was found to be expressed in the optic tectum already 2 days before the arrival of the first retinal ganglion cell axons, suggesting an early role of BDNF in tectal development. After the beginning of tectal innervation, BDNF mRNA levels markedly increased, and optic stalk transection at day 4 (which prevents subsequent tectal innervation) was found to reduce the contralateral tectal levels of BDNF mRNA. Comparable reductions were obtained after injection of tetrodotoxin into one eye, indicating that, already during the earliest stages of target encounter in the CNS, the degree of BDNF gene expression is influenced by activity-dependent mechanisms. BDNF mRNA was also detected in the retina itself and at levels comparable to those found in the tectum. Together with previous findings indicating that BDNF prevents the death of cultured chick retinal ganglion cells, these results support the idea that the tightly controlled expression of the BDNF gene might be important in the co-ordinated development of the visual system.


Sign in / Sign up

Export Citation Format

Share Document