scholarly journals Redefining intestinal immunity with single-cell transcriptomics

Author(s):  
Kylie Renee James ◽  
Rasa Elmentaite ◽  
Sarah Amalia Teichmann ◽  
Georgina Louise Hold

AbstractThe intestinal immune system represents the largest collection of immune cells in the body and is continually exposed to antigens from food and the microbiota. Here we discuss the contribution of single-cell transcriptomics in shaping our understanding of this complex system. We consider the impact on resolving early intestine development, engagement with the neighbouring microbiota, diversity of intestinal immune cells, compartmentalisation within the intestines and interactions with non-immune cells. Finally, we offer a perspective on open questions about gut immunity that evolving single-cell technologies are well placed to address.

2019 ◽  
Author(s):  
Jian He ◽  
Yingxin Lin ◽  
Xianbin Su ◽  
Qing Luo ◽  
Shila Ghazanfar ◽  
...  

AbstractHepatocellular Carcinoma (HCC) is a type of malignant solid tumor, causing high morbidity and mortality around the world and the major portion of HCC patients is from China. Cancer immunotherapies have shown some clinical responses in treating some types of cancer but did not shown significant efficiency in HCC treatment. This in part due to the impact of immune cells in the tumor microenvironment. It is commonly believed that HCC is a heterogeneous solid tumor and the microenvironment of HCC plays an important role in tumorgenesis and development. Currently, the residents of the microenvironment of HCC is not well-defined and clarification, especially the immune cells, which we believe that paly pivotal roles in tumorgenesis and development. To depict the landscape of the composition, lineage and functional states of the immune cells in HCC, we performed single-cell RNA sequencing on Diethylnitrosamine (DEN)-induced mouse HCC model. We observed heterogeneity within the immune and hepatocytes both in the precancerous condition of tumorigenesis and cancerous condition of HCC. In this study we found that the disease-associated changes appeared early in pathological progression and were highly cell-type specific. Specific subsets of T and B cells preferentially enriched in HCC, and we identified signature genes for each subset. Additionally, we mapped this group of specific cells to the human TCGA database. We found a cluster of naïve B cells characterized by high expression of CD38 associated with better prognosis of human HCC. Our study demonstrates signaling interaction map based on receptor-ligand bonding on the single-cell level could broaden our comprehending of cellular networks in varies status. Our finding provides a new approach for patient stratification and will help further understand the functional states, dynamics and signaling interaction of B cells in hepatocellular carcinoma, and may provide a novel insight and therapeutics for the HCC.


Author(s):  
Wesley T Abplanalp ◽  
David John ◽  
Sebastian Cremer ◽  
Birgit Assmus ◽  
Lena Dorsheimer ◽  
...  

Abstract Aims Identification of signatures of immune cells at single-cell level may provide novel insights into changes of immune-related disorders. Therefore, we used single-cell RNA-sequencing to determine the impact of heart failure on circulating immune cells. Methods and results We demonstrate a significant change in monocyte to T-cell ratio in patients with heart failure, compared to healthy subjects, which were validated by flow cytometry analysis. Subclustering of monocytes and stratification of the clusters according to relative CD14 and FCGR3A (CD16) expression allowed annotation of classical, intermediate, and non-classical monocytes. Heart failure had a specific impact on the gene expression patterns in these subpopulations. Metabolically active genes such as FABP5 were highly enriched in classical monocytes of heart failure patients, whereas β-catenin expression was significantly higher in intermediate monocytes. The selective regulation of signatures in the monocyte subpopulations was validated by classical and multifactor dimensionality reduction flow cytometry analyses. Conclusion Together this study shows that circulating cells derived from patients with heart failure have altered phenotypes. These data provide a rich source for identification of signatures of immune cells in heart failure compared to healthy subjects. The observed increase in FABP5 and signatures of Wnt signalling may contribute to enhanced monocyte activation.


2017 ◽  
Author(s):  
Ana M. C. Faria ◽  
Bernardo S. Reis ◽  
Daniel Mucida

AbstractTissue adaptation is an intrinsic component of immune cell development, influencing both resistance to pathogens and tolerance. Chronically stimulated surfaces of the body, in particular the gut mucosa, are the major sites where immune cells traffic and reside. Their adaptation to these environments requires constant discrimination between natural stimulation coming from harmless microbiota and food, and pathogens that need to be cleared. This review will focus on the adaptation of lymphocytes to the gut mucosa, a highly specialized environment that can help us understand the plasticity of leukocytes arriving at various tissue sites and how tissue-related factors operate to shape immune cell fate and function.


2020 ◽  
Author(s):  
Karolina Hlavová ◽  
Hana Kudláčková ◽  
Martin Faldyna

Abstract Background: Farrowing induction with prostaglandin F2 analogue cloprostenol is commonly used on commercial farms to manage the timing of farrowing. When labour induction is applied, the questions arise about possible side effects of such a hormonal intervention on physiological processes connected with labour and lactation, including colostral immunity. Results: In this study, immune cells composition, lysozyme concentration, complement bacteriolytic activity and proinflamatory (GM-CSF2, IL-1β, IL-6, a TNFα) and anti-inflammatory (IL-4, IL-10, TGFβ1 a TGFβ2) cytokines were measured in colostrum samples from sows farrowing naturally (NP) and from sows with farrowing induced using cloprostenol administration on day 113 of gestation (IP). A significantly higher proportion of lymphocytes was found in colostrum of induced sows compared to colostrum of non-induced sows. No significant differences between NP and IP were found in complement activity, in the proportions of granulocytes, macrophages and lymphocyte subpopulations. Lower lysozyme concentration and higher IL-1β, IL-6, TGFβ1 and TNFα concentrations were found in IP sow colostrum compared to colostrum from NP sows. Conclusions: An increased proportion of colostral lymphocytes can positively influence the cellular immunity transmission from sow to her offspring. On the other hand, a lower lysozyme concentration can adversely affect newborn’s intestinal immunity, as well as changes in cytokine concentrations can have an adverse effect on newborn piglet intestinal epithelium development and its defence function.


2020 ◽  
Author(s):  
Karolina Hlavová ◽  
Hana Kudláčková ◽  
Martin Faldyna

Abstract Background: Farrowing induction with prostaglandin F2 analogue cloprostenol is commonly used on commercial farms to manage the timing of farrowing. When labour induction is applied, the questions arise about possible side effects of such a hormonal intervention on physiological processes connected with labour and lactation, including colostral immunity.Results: In this study, immune cells composition, lysozyme concentration, complement bacteriolytic activity and proinflamatory (GM-CSF2, IL-1β, IL-6, a TNFα) and anti-inflammatory (IL-4, IL-10, TGFβ1 a TGFβ2) cytokines were measured in colostrum samples from sows farrowing naturally (NP) and from sows with farrowing induced using cloprostenol administration on day 113 of gestation (IP). A significantly higher proportion of lymphocytes was found in colostrum of induced sows compared to colostrum of non-induced sows. No significant differences between NP and IP were found in complement activity, in the proportions of granulocytes, macrophages and lymphocyte subpopulations. Lower lysozyme concentration and higher IL-1β, IL-6, TGFβ1 and TNFα concentrations were found in IP sow colostrum compared to colostrum from NP sows. Conclusions: An increased number of colostral lymphocytes can positively influence the cellular immunity transmission from sow to her offspring. On the other hand, a lower lysozyme concentration can adversely affect newborn’s intestinal immunity, as well as changes in cytokine concentrations can have an adverse effect on newborn piglet intestinal epithelium development and its defence function.


2020 ◽  
Vol 21 (19) ◽  
pp. 7084
Author(s):  
Fabiana da Silva Lima ◽  
Ricardo Ambrósio Fock

Magnesium (Mg2+) is an essential mineral for the functioning and maintenance of the body. Disturbances in Mg2+ intracellular homeostasis result in cell-membrane modification, an increase in oxidative stress, alteration in the proliferation mechanism, differentiation, and apoptosis. Mg2+ deficiency often results in inflammation, with activation of inflammatory pathways and increased production of proinflammatory cytokines by immune cells. Immune cells and others that make up the blood system are from hematopoietic tissue in the bone marrow. The hematopoietic tissue is a tissue with high indices of renovation, and Mg2+ has a pivotal role in the cell replication process, as well as DNA and RNA synthesis. However, the impact of the intra- and extracellular disturbance of Mg2+ homeostasis on the hematopoietic tissue is little explored. This review deals specifically with the physiological requirements of Mg2+ on hematopoiesis, showing various studies related to the physiological requirements and the effects of deficiency or excess of this mineral on the hematopoiesis regulation, as well as on the specific process of erythropoiesis, granulopoiesis, lymphopoiesis, and thrombopoiesis. The literature selected includes studies in vitro, in animal models, and in humans, giving details about the impact that alterations of Mg2+ homeostasis can have on hematopoietic cells and hematopoietic tissue.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jin Bu ◽  
Zhaohui Wang

Considering the prevalence of cardiovascular disease (CVD), significant interest has been focused on the gut microbiota-heart interaction because the gut microbiota has been recognized as a barometer of human health. Dysbiosis, characterized by changes in the gut microbiota in CVD, has been reported in cardiovascular pathologies, such as atherosclerosis, hypertension, and heart failure. Conversely, gut microbiota-derived metabolites, such as trimethylamine/trimethylamineN-oxide (TMA/TMAO), can impact host physiology. Further, bacterial dysbiosis can disturb gut immunity, which increases the risk of acute arterial events. Moreover, studies of germ-free mice have provided evidence that microbiota diversity and the presence of a specific microbe in the gut can affect immune cells in hosts. Therefore, the changes in the composition of the gut microbiota can affect host metabolism and immunity. Importantly, these effects are not only confined to the gut but also spreaded to distal organs. The purpose of the current review is to highlight the complex interplay between the microbiota and CVD via TMAO and different immune cells and discuss the roles of probiotics and nutrition interventions in modulating the intestinal microbiota as novel therapeutic targets of CVD.


2020 ◽  
Vol 38 (1) ◽  
pp. 727-757 ◽  
Author(s):  
Mirjana Efremova ◽  
Roser Vento-Tormo ◽  
Jong-Eun Park ◽  
Sarah A. Teichmann ◽  
Kylie R. James

Immune cells are characterized by diversity, specificity, plasticity, and adaptability—properties that enable them to contribute to homeostasis and respond specifically and dynamically to the many threats encountered by the body. Single-cell technologies, including the assessment of transcriptomics, genomics, and proteomics at the level of individual cells, are ideally suited to studying these properties of immune cells. In this review we discuss the benefits of adopting single-cell approaches in studying underappreciated qualities of immune cells and highlight examples where these technologies have been critical to advancing our understanding of the immune system in health and disease.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Karolina Hlavová ◽  
Hana Kudláčková ◽  
Martin Faldyna

Abstract Background Farrowing induction with prostaglandin F2 analogue cloprostenol is commonly used on commercial farms to manage the timing of farrowing. When labour induction is applied, the questions arise about possible side effects of such a hormonal intervention on physiological processes connected with labour and lactation, including colostral immunity. Results In this study, immune cells composition, lysozyme concentration, complement bacteriolytic activity and proinflamatory (GM-CSF2, IL-1β, IL-6, a TNFα) and anti-inflammatory (IL-4, IL-10, TGFβ1 a TGFβ2) cytokines were measured in colostrum samples from sows farrowing naturally (NP) and from sows with farrowing induced using cloprostenol administration on day 113 of gestation (IP). A significantly higher proportion of lymphocytes was found in colostrum of induced sows compared to colostrum of non-induced sows. No significant differences between NP and IP were found in complement activity, in the proportions of granulocytes, macrophages and lymphocyte subpopulations. Lower lysozyme concentration and higher IL-1β, IL-6, TGFβ1 and TNFα concentrations were found in IP sow colostrum compared to colostrum from NP sows. Conclusions An increased proportion of colostral lymphocytes can positively influence the cellular immunity transmission from sow to her offspring. On the other hand, a lower lysozyme concentration can adversely affect newborn’s intestinal immunity, as well as changes in cytokine concentrations can have an adverse effect on newborn piglet intestinal epithelium development and its defence function.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3980-3980
Author(s):  
Catherine Diefenbach ◽  
Linda Lam ◽  
Bruce G. Raphael ◽  
Kenneth B. Hymes ◽  
Michael L. Grossbard ◽  
...  

Background: Classical Hodgkin lymphoma (HL) has a unique histopathology, with rare malignant Hodgkin/Reed Sternberg (HRS) cells surrounded by a strong inflammatory cellular component in the tumor microenvironment (TME). Although extensive studies describe the interdependence of the HRS cells and the TME, the impact of HL on systemic immunity has not been well described. Here, we develop a new approach, employing a recently commercialized single cell cytokine secretion platform (IsoLight) to assess, precisely and comprehensively, the function of peripheral blood mononuclear cells (PBMCs) in HL patients. Methods: Cells were selected from 4 HL patients: 2 newly diagnosed who had a complete response (CR) to therapy standard first line therapy, and 2 relapsed patients who progressed on second line chemotherapy (PD). Cryopreserved PBMCs from a pre-treatment and post-treatment time point for each patient were thawed, rested overnight, stimulated with PMA/ionomycin and loaded into the IsoLight single cell cytokine secretion system. IsoLight captures single cells in microwells; as cytokines are secreted, they are bound by antibodies lining the microwell cover. Bound cytokines are then revealed by fluorescent secondary antibodies and photos are taken at various time points to assess fluorescence intensity, which corresponds to the relative amount of each cytokine secreted. Twenty thousand cells can be assayed per sample simultaneously. Results: The percentage of cytokine-secreting cells varied dramatically by donor (12%-48%), with monofunctional cells making only TNFa, MIP1b, or IL-15 dominating the functional landscape. Polyfunctional cells, capable of making three or more cytokines simultaneously represented only 0.1-7% of the cells in each sample, but there were more of these cells, and each secreted higher levels of cytokines, in individuals who responded to therapy with a CR. Responders also secreted higher levels of IL2, Perforin, IL4, IL12, MIP1a, and TNFb (p values ranging from 0.005 to 0.03), and lower levels of IL9 and IL22 (p=0.0028 and 0.021, respectively), compared to non-responders at diagnosis. Responders lost expression of IL4, IL7, and MIP1a over the course of treatment (pre- vs post-treatment, p=0.01 to 0.05), while non-responders gained cells that expressed IL4, IL5, IL10, IL17, and TNFb from diagnosis to end of treatment (p=0.001 to 0.05). Conclusion: This work represents an important methodological advance in immune monitoring for hematologic malignancies. Single cell cytokine secretion technology measures more cytokines simultaneously than flow cytometry, providing a sample-sparing and comprehensive overview of the functional landscape of immune cells in a patient. Moreover, the technology provides cell-by-cell information about cytokine secretion, unlike Luminex. Our work represents the first application of this technology to HL, which we use to define, for the first time, the particular combinations of 32 cytokines that can be secreted by individual immune cells. We also identify candidate cytokines whose frequency at diagnosis may predict treatment outcome, and reveal changes in cytokine levels over treatment time that may distinguish patients destined to relapse. Immunotherapy may impact PBMC function differently, this may partially explain the high efficacy of this therapy in the relapsed population. The impact of immunotherapy on cytokine levels is currently under investigation by our group in a larger study. Other important questions which are under investigation include the impact of prior chemotherapy on cytokine profiles in relapsed patients, and whether certain cytokines which increase during treatment may be a surrogage for tumor bulk in patients with PD. Cytokines elevated in patients with poor responses to treatment include IL9, IL10, IL17, and IL22, which may present attractive drug targets if validated in our larger ongoing follow-up study. Disclosures Diefenbach: Bristol-Myers Squibb: Consultancy, Research Funding; MEI: Research Funding; Denovo: Research Funding; Genentech: Consultancy, Research Funding; Incyte: Research Funding; LAM Therapeutics: Research Funding; Merck: Consultancy, Research Funding; Seattle Genetics: Consultancy, Research Funding; Trillium: Research Funding; Millenium/Takeda: Research Funding. Hymes:Celgene: Consultancy. Martin:Janssen: Consultancy; Sandoz: Consultancy; Karyopharm: Consultancy; Celgene: Consultancy; Teneobio: Consultancy; I-MAB: Consultancy. Ruan:Celgene: Consultancy, Honoraria, Research Funding; AstraZeneca: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria; Pharmacyclics LLC, an AbbVie company: Research Funding; Juno: Consultancy; Kite: Consultancy. Leonard:Miltenyi: Consultancy; Akcea Therapeutics: Consultancy; Sandoz: Consultancy; AstraZeneca: Consultancy; Bayer Corporation: Consultancy; Epizyme, Inc: Consultancy; BeiGene: Consultancy; Miltenyi: Consultancy; ADC Therapeutics: Consultancy; Akcea Therapeutics: Consultancy; Sandoz: Consultancy; Celgene: Consultancy; Epizyme, Inc: Consultancy; Karyopharm Therapeutics: Consultancy; AstraZeneca: Consultancy; Bayer Corporation: Consultancy; Celgene: Consultancy; Sutro Biopharma: Consultancy; Merck: Consultancy; Genentech, Inc./F. Hoffmann-La Roche Ltd: Consultancy; Gilead: Consultancy; Karyopharm Therapeutics: Consultancy; Sutro Biopharma: Consultancy; Nordic Nanovector: Consultancy; ADC Therapeutics: Consultancy; MorphoSys: Consultancy; Gilead: Consultancy; Nordic Nanovector: Consultancy; BeiGene: Consultancy; Merck: Consultancy; Genentech, Inc./F. Hoffmann-La Roche Ltd: Consultancy; MorphoSys: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document