scholarly journals The extracellular-regulated protein kinase 5 (ERK5) enhances metastatic burden in triple-negative breast cancer through focal adhesion protein kinase (FAK)-mediated regulation of cell adhesion

Oncogene ◽  
2021 ◽  
Author(s):  
Qiuping Xu ◽  
Jingwei Zhang ◽  
Brian A. Telfer ◽  
Hao Zhang ◽  
Nisha Ali ◽  
...  

AbstractThere is overwhelming clinical evidence that the extracellular-regulated protein kinase 5 (ERK5) is significantly dysregulated in human breast cancer. However, there is no definite understanding of the requirement of ERK5 in tumor growth and metastasis due to very limited characterization of the pathway in disease models. In this study, we report that a high level of ERK5 is a predictive marker of metastatic breast cancer. Mechanistically, our in vitro data revealed that ERK5 was critical for maintaining the invasive capability of triple-negative breast cancer (TNBC) cells through focal adhesion protein kinase (FAK) activation. Specifically, we found that phosphorylation of FAK at Tyr397 was controlled by a kinase-independent function of ERK5. Accordingly, silencing ERK5 in mammary tumor grafts impaired FAK phosphorylation at Tyr397 and suppressed TNBC cell metastasis to the lung without preventing tumor growth. Collectively, these results establish a functional relationship between ERK5 and FAK signaling in promoting malignancy. Thus, targeting the oncogenic ERK5-FAK axis represents a promising therapeutic strategy for breast cancer exhibiting aggressive clinical behavior.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Débora Ferreira ◽  
Joaquim Barbosa ◽  
Diana A. Sousa ◽  
Cátia Silva ◽  
Luís D. R. Melo ◽  
...  

AbstractTriple-negative breast cancer is the most aggressive subtype of invasive breast cancer with a poor prognosis and no approved targeted therapy. Hence, the identification of new and specific ligands is essential to develop novel targeted therapies. In this study, we aimed to identify new aptamers that bind to highly metastatic breast cancer MDA-MB-231 cells using the cell-SELEX technology aided by high throughput sequencing. After 8 cycles of selection, the aptamer pool was sequenced and the 25 most frequent sequences were aligned for homology within their variable core region, plotted according to their free energy and the key nucleotides possibly involved in the target binding site were analyzed. Two aptamer candidates, Apt1 and Apt2, binding specifically to the target cells with $$K_{d}$$ K d values of 44.3 ± 13.3 nM and 17.7 ± 2.7 nM, respectively, were further validated. The binding analysis clearly showed their specificity to MDA-MB-231 cells and suggested the targeting of cell surface receptors. Additionally, Apt2 revealed no toxicity in vitro and showed potential translational application due to its affinity to breast cancer tissue sections. Overall, the results suggest that Apt2 is a promising candidate to be used in triple-negative breast cancer treatment and/or diagnosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia M. Saraiva ◽  
Carlha Gutiérrez-Lovera ◽  
Jeannette Martínez-Val ◽  
Sainza Lores ◽  
Belén L. Bouzo ◽  
...  

AbstractTriple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells’ proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ke Gong ◽  
Juyang Jiao ◽  
Chaoqun Xu ◽  
Yang Dong ◽  
Dongxiao Li ◽  
...  

Abstract Background Overexpressed vascular endothelial growth factor A (VEGFA) and phosphorylated signal transducer and activator of transcription 3 (P-STAT3) cause unrestricted tumor growth and angiogenesis of breast cancer (BRCA), especially triple-negative breast cancer (TNBC). Hence, novel treatment strategy is urgently needed. Results We found sphingosine 1 phosphate receptor 1 (S1PR1) can regulate P-STAT3/VEGFA. Database showed S1PR1 is highly expressed in BRCA and causes the poor prognosis of patients. Interrupting the expression of S1PR1 could inhibit the growth of human breast cancer cells (MCF-7 and MDA-MB-231) and suppress the angiogenesis of human umbilical vein endothelial cells (HUVECs) via affecting S1PR1/P-STAT3/VEGFA axis. Siponimod (BAF312) is a selective antagonist of S1PR1, which inhibits tumor growth and angiogenesis in vitro by downregulating the S1PR1/P-STAT3/VEGFA axis. We prepared pH-sensitive and tumor-targeted shell-core structure nanoparticles, in which hydrophilic PEG2000 modified with the cyclic Arg-Gly-Asp (cRGD) formed the shell, hydrophobic DSPE formed the core, and CaP (calcium and phosphate ions) was adsorbed onto the shell; the nanoparticles were used to deliver BAF312 (BAF312@cRGD-CaP-NPs). The size and potential of the nanoparticles were 109.9 ± 1.002 nm and − 10.6 ± 0.056 mV. The incorporation efficacy for BAF312 was 81.4%. Results confirmed BAF312@cRGD-CaP-NP could dramatically inhibit tumor growth and angiogenesis in vitro and in MDA-MB-231 tumor-bearing mice via downregulating the S1PR1/P-STAT3/VEGFA axis. Conclusions Our data suggest a potent role for BAF312@cRGD-CaP-NPs in treating BRCA, especially TNBC by downregulating the S1PR1/P-STAT3/VEGFA axis. Graphic abstract


2020 ◽  
Vol 6 (8) ◽  
pp. eaaw9960 ◽  
Author(s):  
Yuanyuan Qin ◽  
Weilong Chen ◽  
Guojuan Jiang ◽  
Lei Zhou ◽  
Xiaoli Yang ◽  
...  

Triple-negative breast cancer (TNBC) is life-threatening because of limited therapies and lack of effective therapeutic targets. Here, we found that moesin (MSN) was significantly overexpressed in TNBC compared with other subtypes of breast cancer and was positively correlated with poor overall survival. However, little is known about the regulatory mechanisms of MSN in TNBC. We found that MSN significantly stimulated breast cancer cell proliferation and invasion in vitro and tumor growth in vivo, requiring the phosphorylation of MSN and a nucleoprotein NONO-assisted nuclear localization of phosphorylated MSN with protein kinase C (PKC) and then the phosphorylation activation of CREB signaling by PKC. Our study also demonstrated that targeting MSN, NONO, or CREB significantly inhibited breast tumor growth in vivo. These results introduce a new understanding of MSN function in breast cancer and provide favorable evidence that MSN or its downstream molecules might serve as new targets for TNBC treatment.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3145
Author(s):  
Veronica Vella ◽  
Marika Giuliano ◽  
Alessandro La Ferlita ◽  
Michele Pellegrino ◽  
Germano Gaudenzi ◽  
...  

The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis.


2020 ◽  
Author(s):  
Sadiya Parveen ◽  
Sumit Siddharth ◽  
Laurene S Cheung ◽  
Alok Kumar ◽  
John R Murphy ◽  
...  

ABSTRACTIn many solid tumors including triple-negative breast cancer (TNBC), IL-4 receptor (IL-4R) upregulation has been shown to promote cancer cell proliferation, apoptotic resistance, metastatic potential and a Th2 response in the tumor microenvironment (TME). Immunosuppressive cells in the TME including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) also express the IL4-R. We hypothesized that selective depletion of IL4-R bearing cells in TNBC may have dual cytotoxic and immunotherapeutic benefit. To selectively target IL-4R+ cells, we genetically constructed, expressed and purified DABIL-4, a fusion protein toxin consisting of the catalytic and translocation domains of diphtheria toxin fused to murine IL-4. We found that DABIL-4 has potent and specific cytotoxic activity against TNBC cells in vitro. In murine TNBC models, DABIL-4 significantly reduced tumor growth, splenomegaly and lung metastases, and this was associated with reductions in MDSC, TAM and regulatory T-cells (Tregs) populations with a concomitant increase in the proportion of IFNγ+ CD8 T-cells. The anti-tumor activity of DABIL-4 was absent in IL-4R KO mice directly implicating IL-4R directed killing as the mechanism of anti-tumor activity. Moreover, NanoString analysis of DABIL-4 treated TNBC tumors revealed marked decline in mRNA transcripts that promote tumorigenesis and metastasis. Our findings demonstrate that DABIL-4 is a potent targeted antitumor agent which depletes both IL-4R bearing tumor cells as well as immunosuppressive cell populations in the TME.STATEMENT OF SIGNIFICANCEIn solid tumors like breast cancer, Interleukin-4 receptor (IL-4R) expression in the tumor microenvironment aids tumor growth and metastasis. IL-4R expression upon host immune cells further dampens antitumor immunity. In this study, we have genetically constructed a fusion protein toxin, DABIL-4, composed of the catalytic and translocation domains of diphtheria toxin and murine IL-4. DABIL-4 showed specific cytotoxicity against triple-negative breast cancer (TNBC) cells in vitro. DABIL-4 also markedly inhibited TNBC tumor growth and metastasis in vivo. The primary activity of DABIL-4 was found to be depletion of IL-4R+ immune cells in combination with direct elimination of tumor cells. In conclusion, DABIL-4 targeting of both tumor and immunosuppressive host cells is a versatile and effective treatment strategy for TNBC.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254714
Author(s):  
James Kenney ◽  
Abibatou Ndoye ◽  
John M. Lamar ◽  
C. Michael DiPersio

Integrin receptors for the extracellular matrix play critical roles at all stages of carcinogenesis, including tumor growth, tumor progression and metastasis. The laminin-binding integrin α3β1 is expressed in all epithelial tissues where it has important roles in cell survival, migration, proliferation, and gene expression programs during normal and pathological tissue remodeling. α3β1 signaling and adhesion functions promote tumor growth and metastasis in a number of different types of cancer cells. Previously, we used RNA interference (RNAi) technology to suppress the expression of the ITGA3 gene (encoding the α3 subunit) in the triple-negative breast cancer cell line, MDA-MB-231, thereby generating variants of this line with reduced expression of integrin α3β1. This approach revealed that α3β1 promotes pro-tumorigenic functions such as cell invasion, lung metastasis, and gene regulation. In the current study, we used CRISPR technology to knock out the ITGA3 gene in MDA-MB-231 cells, thereby ablating expression of integrin α3β1 entirely. RNA-seq analysis revealed that while the global transcriptome was altered substantially by RNAi-mediated suppression of α3β1, it was largely unaffected following CRISPR-mediated ablation of α3β1. Moreover, restoring α3β1 to the latter cells through inducible expression of α3 cDNA failed to alter gene expression substantially, suggesting that use of CRISPR to abolish α3β1 led to a decoupling of the integrin from its ability to regulate the transcriptome. Interestingly, both cell invasion in vitro and metastatic colonization in vivo were reduced when α3β1 was abolished using CRISPR, as we observed previously using RNAi to suppress α3β1. Taken together, our results show that pro-invasive/pro-metastatic roles for α3β1 are not dependent on its ability to regulate the transcriptome. Moreover, our finding that use of RNAi versus CRISPR to target α3β1 produced distinct effects on gene expression underlines the importance of using multiple approaches to obtain a complete picture of an integrin’s functions in cancer cells.


2020 ◽  
Author(s):  
Ruishan Zhang ◽  
Xiang Li ◽  
Zhuangkai Liu ◽  
Yuying Wang ◽  
Hao Zhang ◽  
...  

Abstract BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer that lacks expression of estrogen receptor (ER) and progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2) gene. Chemotherapy remains the standard of care for TNBC treatment, but considerable patients are very resistant to chemotherapy. Mutations or aberrant upregulation of EZH2 occur frequently, and EZH2 inhibitor (EZH2i) showed some preclinic antitumor effects in TNBC.METHODS: RNA-seq data of 3 TNBC cell lines either treated with 2 μM GSK343, or stably transduced with shEHZ2, compared to untreated controls (GSE112378) were analyzed by Limma R package. The Kaplan Meier plotter (KM plotter) database was used to assess the relevance of FOSB mRNA expression to relapse-free survival (RFS) in TNBC. Cell number counting and colony formation assays were used to detect the biological effect of FOSB on the growth of TNBC cells in vitro. The effect of FOSB on TNBC tumor growth in vivo was investigated in a mice tumor xenograft model. Luciferase reporter and chromatin immunoprecipitation (Chip) assays were used to determine the regulatory roles of C/EBPβ on FOSB expression. RESULTS: We found that FOSB, a member of the activator protein-1 complex, was a direct downstream target of EZH2. FOSB was significantly decreased in TNBC samples and associated with better relapse-free survival (RFS). EZH2-mediated histone 3 trimethylated on lysine 27 (H3K27me3), a marker of silent chromatin conformation, at the FOSB promoter inhibited it expression. Depletion of FOSB in TNBC cells promoted cell proliferation in vitro and tumor growth in vitro by inactivating the p53 pathway and conferred resistant to EZH2 inhibitor (EZH2i). Mechanistically, EZH2i promotes the shift from H3K27me3 to H3K27ac at the FOSB promoter, and recruits the transcription factor C/EBPβ to activate FOSB gene transcription.CONCLUSION: Together, our results suggest that EZH2-mediated epigenetic inactivation of FOSB promotes TNBC expression and demonstrate that reactivation of FOSB expression by C/EBPβ underlies the anti-TNBC action of EZH2is.


Sign in / Sign up

Export Citation Format

Share Document