scholarly journals Light exposure mediates circadian rhythms of rhizosphere microbial communities

2021 ◽  
Author(s):  
Kankan Zhao ◽  
Bin Ma ◽  
Yan Xu ◽  
Erinne Stirling ◽  
Jianming Xu

AbstractMicrobial community circadian rhythms have a broad influence on host health and even though light-induced environmental fluctuations could regulate microbial communities, the contribution of light to the circadian rhythms of rhizosphere microbial communities has received little attention. To address this gap, we monitored diel changes in the microbial communities in rice (Oryza sativa L.) rhizosphere soil under light–dark and constant dark regimes, identifying microbes with circadian rhythms caused by light exposure and microbial circadian clocks, respectively. While rhizosphere microbial communities displayed circadian rhythms under light–dark and constant dark regimes, taxa possessing circadian rhythms under the two conditions were dissimilar. Light exposure concealed microbial circadian clocks as a regulatory driver, leading to fewer ecological niches in light versus dark communities. These findings disentangle regulation mechanisms for circadian rhythms in the rice rhizosphere microbial communities and highlight the role of light-induced regulation of rhizosphere microbial communities.

2014 ◽  
Vol 92 (12) ◽  
pp. 1083-1091 ◽  
Author(s):  
I. van der Merwe ◽  
N.C. Bennett ◽  
A. Haim ◽  
M.K. Oosthuizen

The locomotor activity rhythms of wild-caught Namaqua rock mice (Micaelamys namaquensis (A. Smith, 1834)) were examined under four light-cycle regimes to quantitatively describe the daily expression of locomotor activity and to study the innate relationship between activity and the light–dark cycle. Activity was always significantly higher at night than during the day; we note four trends. (1) The LD1 light cycle (12 h light : 12 h dark) established a distinct light-entrained and strongly nocturnal activity rhythm (99.11% nocturnal activity). The activity onset was prompt (zeitgeber time (ZT) 12.2 ± 0.04) and activity continued without any prominent peaks or extended times of rest until the offset of activity at ZT 23.73 ± 0.08. (2) Evidence for the internal maintenance of locomotor activity was obtained from the constant dark cycle (DD) in which locomotor activity free ran (mean τ = 23.89 h) and 77.58% of the activity was expressed during the subjective night. (3) During re-entrainment (LD2; 12 h light : 12 h dark), a nocturnal activity rhythm was re-established (98.65% nocturnal activity). (4) The inversion of the light cycle (DL; 12 h dark : 12 h light) evoked a shift in activity that again revealed dark-induced locomotor activity (95.69% nocturnal activity). Females were consistently more active than males in all of the light cycles, but only under the DD and LD2 cycles were females significantly more active than males. Although this species is considered nocturnal from field observations, information regarding its daily expression of activity and the role of light in its entrainment is lacking. To the best of our knowledge, this study is the first to report quantitatively on the species’ daily rhythm of activity and to investigate its relationship to the light–dark cycle.


HortScience ◽  
1994 ◽  
Vol 29 (8) ◽  
pp. 854-857
Author(s):  
William J. Carpenter ◽  
Eric R. Ostmark ◽  
John A. Cornell

The role of light on impatiens seed germination and radicle emergence was studied. Seeds having a photodormancy require light for only part of the germination period. Germination ≥85% was achieved after 3, 2, or 1 day of irradiance at 1.5, 15, or 75 μmol·s-1·m-2, respectively. Keeping imbibed seeds in darkness for ≥2 days before light exposure caused reduced total germination percentages (G), delayed achieving 50% of the final germination percentage (T50), and increased the days between 10% and 90% germination (T90-T10). Light for 6 hours daily at 1.5, 15, or 150 μmol·s-1·m-2 promoted high G and rapid and uniform germination, but daily 12 to 24 hours of irradiance decreased G and increased T50 and T90-T10. Estimated rates of decline (increase) in G, T50, or T90-T10 with each added day of light (darkness) or increasing daily hours of light were measured by fitting regression equations. Impatiens seed germination was promoted by the initial 1 to 3 days of light, but light inhibited radicle extension in the latter germination stages.


2021 ◽  
pp. 074873042110443
Author(s):  
Yool Lee ◽  
Jeffrey M. Field ◽  
Amita Sehgal

Circadian clocks are biological timing mechanisms that generate 24-h rhythms of physiology and behavior, exemplified by cycles of sleep/wake, hormone release, and metabolism. The adaptive value of clocks is evident when internal body clocks and daily environmental cycles are mismatched, such as in the case of shift work and jet lag or even mistimed eating, all of which are associated with physiological disruption and disease. Studies with animal and human models have also unraveled an important role of functional circadian clocks in modulating cellular and organismal responses to physiological cues (ex., food intake, exercise), pathological insults (e.g. virus and parasite infections), and medical interventions (e.g. medication). With growing knowledge of the molecular and cellular mechanisms underlying circadian physiology and pathophysiology, it is becoming possible to target circadian rhythms for disease prevention and treatment. In this review, we discuss recent advances in circadian research and the potential for therapeutic applications that take patient circadian rhythms into account in treating disease.


2012 ◽  
Vol 43 (6) ◽  
pp. 681-687 ◽  
Author(s):  
Claudia Giannetto ◽  
Francesco Fazio ◽  
Irene Vazzana ◽  
Michele Panzera ◽  
Giuseppe Piccione

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3644-3644
Author(s):  
Morayo Adebiyi ◽  
Zhaoyang Zhao ◽  
Jeanne Manalo ◽  
Cheng Chi Lee ◽  
Wa Xian ◽  
...  

Abstract Sickle-cell disase (SCD) is a life-threatening hemolytic genetic disorder. Chronic hemolysis and elevated inflammation that underlie SCD pathophysiology is difficult to treat in the clinic due to an unclear mechanism. The role of the circadian clock is required for maintaining inflammatory states which is important for proper cellular and organ function. Circadian clocks are regulated by a series of circadian clock genes which have known functions in inflammation, heme and iron metabolism. However, the function of circadian clocks in SCD remains unknown. Here, using an unbiased and robust microarray screen, we found that genes involved in circadian rhythms, inflammatory response, heme and iron metabolism were significantly altered in the lungs of SCD Berkeley transgenic mice compared to C57BL/6 (WT) mice used as controls (N=3, P<0.05, normalized to WT). Period 2 (Per2) gene plays a role in regulating the circadian clock. Since the role of Per2 is not known in SCD, we transplanted bone marrow (BM) of SCD and WT mice to Per2Luciferase (Per2Luc) bioluminescence reporter mice to generate SCD → Per2 Luc and WT→ Per2 Luc mice. Per2 circadian rhythms were determined by amplitude and periodicity in ex-vivo derived lung tissue explants. Although the period of the Per2 rhythms remained persistent throughout three circadian cycles, we demonstrated that the amplitude of circadian rhythm of Per2 was significantly upregulated in SCD mouse lung compared to WT mouse lung (N=3 per group, P<0.05). However, Per2 circadian rhythms in SCD mouse livers and kidneys did not show differences in amplitude or period compared to controls (N= 3 per group). To assess the importance of elevated Per1 and Per2 homologue genes in SCD, we transplanted BM of SCD mice to Per1/Per2 double deficient (Per1/Per2 dKO) and WT mice, respectively. To our surprise, Per1/Per2 dKO transplanted with SCD mouse BM (SCD→ Per1/Per2 dKO) displayed severe irradiation sensitivity and were more susceptible to an early death compared to WT BM transplanted mice. Mechanistically, we revealed that peripheral deletion of Per1/Per2 led to increased systemic inflammation featured with an increase of peripheral white blood cells (WBCs) in SCD→ Per1/Per2 dKO mice compared to SCD→ WT mice (50.47 ± 6.74 and 31.68 ± 1.04, respectfully, N=5 mice per group, P<0.01) without an effect on sickling in both groups of SCD chimeric mice. Moreover, we found that peripheral deletion of Per1/Per2 resulted in severe lung damage characterized by elevated congestion, neutrophil infiltration and secretion of IL-6 in lavage fluid in SCD→ Per1/Per2 dKO mouse lung compared to SCD→ WT mouse lung. Additionally, we identified that peripheral deletion of Per1/Per2 induced iron overload, heme deposits and macrophage infiltration in the lung of SCD→Per1/Per2 dKO mice compared to SCD→ WT mice. In conclusion, we discovered that Per2 is induced in SCD mouse lung but not in other organs such as kidney and liver and that its elevation is beneficial to counteract systemic inflammation, reduce pulmonary inflammatory responses, iron overload, tissue damage and thus increase survival in SCD mice. Overall, our studies reveal new molecular insight applicable to two burgeoning fields, circadian biology and SCD which pave a way for innovative therapeutic avenue for SCD. Disclosures D'Alessandro: Omix Technologies inc: Equity Ownership; Hemanext inc: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document