scholarly journals LOX-1 and cancer: an indissoluble liaison

Author(s):  
M. Murdocca ◽  
C. De Masi ◽  
S. Pucci ◽  
R. Mango ◽  
G. Novelli ◽  
...  

AbstractRecently, a strong correlation between metabolic disorders, tumor onset, and progression has been demonstrated, directing new therapeutic strategies on metabolic targets. OLR1 gene encodes the LOX-1 receptor protein, responsible for the recognition, binding, and internalization of ox-LDL. In the past, several studied, aimed to clarify the role of LOX-1 receptor in atherosclerosis, shed light on its role in the stimulation of the expression of adhesion molecules, pro-inflammatory signaling pathways, and pro-angiogenic proteins, including NF-kB and VEGF, in vascular endothelial cells and macrophages. In recent years, LOX-1 upregulation in different tumors evidenced its involvement in cancer onset, progression and metastasis. In this review, we outline the role of LOX-1 in tumor spreading and metastasis, evidencing its function in VEGF induction, HIF-1alpha activation, and MMP-9/MMP-2 expression, pushing up the neoangiogenic and the epithelial–mesenchymal transition process in glioblastoma, osteosarcoma prostate, colon, breast, lung, and pancreatic tumors. Moreover, our studies contributed to evidence its role in interacting with WNT/APC/β-catenin axis, highlighting new pathways in sporadic colon cancer onset. The application of volatilome analysis in high expressing LOX-1 tumor-bearing mice correlates with the tumor evolution, suggesting a closed link between LOX-1 upregulation and metabolic changes in individual volatile compounds and thus providing a viable method for a simple, non-invasive alternative monitoring of tumor progression. These findings underline the role of LOX-1 as regulator of tumor progression, migration, invasion, metastasis formation, and tumor-related neo-angiogenesis, proposing this receptor as a promising therapeutic target and thus enhancing current antineoplastic strategies.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2795
Author(s):  
Sofia Papanikolaou ◽  
Aikaterini Vourda ◽  
Spyros Syggelos ◽  
Kostis Gyftopoulos

Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1676
Author(s):  
Monserrat Olea-Flores ◽  
Juan C. Juárez-Cruz ◽  
Miriam D. Zuñiga-Eulogio ◽  
Erika Acosta ◽  
Eduardo García-Rodríguez ◽  
...  

Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial–mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.


2021 ◽  
Author(s):  
Qing Liu ◽  
Ouyang Li ◽  
Chi Zhou ◽  
Yu Wang ◽  
Chunxue He ◽  
...  

Abstract Background: Thyroid cancer is the most prevalent malignancy and one of the leading causes of cancer-related deaths. Recent studies have revealed that microRNAs (miRNAs) play an important role in tumorigenesis in various cancer types by affecting the expression of its targets. However, the role of miR-32-5p in thyroid cancer remains limited. Methods: In this study, we attempt to explore the role of miR-32-5p in thyroid cancer and elucidate the underlying mechanism. Expression of miR-32-5p was determined by quantitative reverse transcription PCR. Functional assays were performed by CCK-8 assay, cell colony assay, cell apoptosis assay, cell migration and invasion assays, cell cycle assay and luciferase assay. Protein expression was analyzed by Western blot.Results: In the present study, the role of miR-32-5p in thyroid cancer was firstly explored. It is found that miR-32-5p was downregulated in thyroid cancer tissues and cells. Overexpression of miR-32-5p inhibited thyroid cancer cells proliferation, migration, invasion and epithelial‐mesenchymal transition process; while suppression of miR-32-5p exhibited an opposite effect on thyroid cancer cells. In addition, In addition, a luciferase assay showed Twist1 was identified as a direct target of miR-32-5p in thyroid cancer, and further study showed that restoration of Twist1 attenuated the biological effect of miR-32-5p on thyroid cancer cells. Conclusion: In conclusion, our results demonstrated miR-32-5p functions as a tumor suppressor by targeting Twist1 in thyroid cancer, providing a novel insight into thyroid cancer therapy.


2022 ◽  
Vol 23 (2) ◽  
pp. 800
Author(s):  
Monica Fedele ◽  
Riccardo Sgarra ◽  
Sabrina Battista ◽  
Laura Cerchia ◽  
Guidalberto Manfioletti

The transition between epithelial and mesenchymal phenotype is emerging as a key determinant of tumor cell invasion and metastasis. It is a plastic process in which epithelial cells first acquire the ability to invade the extracellular matrix and migrate into the bloodstream via transdifferentiation into mesenchymal cells, a phenomenon known as epithelial–mesenchymal transition (EMT), and then reacquire the epithelial phenotype, the reverse process called mesenchymal–epithelial transition (MET), to colonize a new organ. During all metastatic stages, metabolic changes, which give cancer cells the ability to adapt to increased energy demand and to withstand a hostile new environment, are also important determinants of successful cancer progression. In this review, we describe the complex interaction between EMT and metabolism during tumor progression. First, we outline the main connections between the two processes, with particular emphasis on the role of cancer stem cells and LncRNAs. Then, we focus on some specific cancers, such as breast, lung, and thyroid cancer.


Oncogenesis ◽  
2020 ◽  
Vol 9 (10) ◽  
Author(s):  
José Manuel García-Heredia ◽  
Daniel Otero-Albiol ◽  
Marco Pérez ◽  
Elena Pérez-Castejón ◽  
Sandra Muñoz-Galván ◽  
...  

Abstract MAP17 (PDZK1IP1) is a small protein regulating inflammation and tumor progression, upregulated in a broad range of carcinomas. MAP17 levels increase during tumor progression in a large percentage of advanced tumors. In the present work, we explored the role of this protein shaping tumor evolution. Here we show that in breast cancer, cells increased MAP17 levels in tumors by demethylation induced multiple changes in gene expression through specific miRNAs downregulation. These miRNA changes are dependent on Notch pathway activation. As a consequence, epithelial mesenchymal transition (EMT) and stemness are induced promoting the metastatic potential of these cells both in vitro and in vivo. Furthermore, MAP17 increased the exosomes in tumor cells, where MAP17 was released as cargo, and this horizontal propagation also increased the EMT in the recipient cells. Importantly, an antibody against MAP17 in the media reduces the EMT and stemness alterations promoted by the conditioned media from MAP17-expressing cells. Therefore, MAP17 expression promotes the horizontal propagation of EMT and metastasis by transferring the MAP17 protein between subsets of neoplastic cells. Thus, MAP17 can be used to describe a new mechanism for cell malignity at distance, without the involvement of genetic or epigenetic modifications. MAP17 can also be taken in consideration as new target for metastatic high-grade breast tumors.


2006 ◽  
Vol 312 (15) ◽  
pp. 2860-2871 ◽  
Author(s):  
Gaelle del Castillo ◽  
Miguel M. Murillo ◽  
Alberto Álvarez-Barrientos ◽  
Esther Bertran ◽  
Margarita Fernández ◽  
...  

2015 ◽  
Vol 3 (5) ◽  
pp. 603-610 ◽  
Author(s):  
BO SUN ◽  
YANTIAN FANG ◽  
ZHENYANG LI ◽  
ZONGYOU CHEN ◽  
JIANBIN XIANG

Author(s):  
Archana P. Thankamony ◽  
Ayalur Raghu Subbalakshmi ◽  
Mohit Kumar Jolly ◽  
Radhika Nair

Lineage plasticity, the switching of cells from one lineage to another has been recognized to be a cardinal property essential for embryonic development, tissue repair and homeostasis. However, such a highly regulated process goes awry when cancer cells exploit this inherent ability to their advantage, resulting in tumorigenesis, relapse, metastasis and therapy resistance. In this review, we summarize our current understanding on the role of lineage plasticity in tumor progression and therapeutic resistance in multiple cancers. Lineage plasticity can be triggered by treatment itself and is reported across various solid as well as liquid tumors. Here we focus on the importance of lineage switching in tumor progression and therapeutic resistance of solid tumors such as the prostate, lung, hepatocellular and colorectal carcinoma and the myeloid and lymphoid lineage switch observed in leukemias. Besides this, we also discuss the role of Epithelial-Mesenchymal Transition (EMT) in facilitating the lineage switch in biphasic cancers such as aggressive carcinosarcomas. We also discuss the mechanisms involved, current therapeutic approaches and challenges that lie ahead in taming the scourge of lineage plasticity in cancer.


2020 ◽  
Vol 21 (20) ◽  
pp. 7624
Author(s):  
Ilona Kaszak ◽  
Olga Witkowska-Piłaszewicz ◽  
Zuzanna Niewiadomska ◽  
Bożena Dworecka-Kaszak ◽  
Felix Ngosa Toka ◽  
...  

Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, differentiation and carcinogenesis. Cadherins are inseparably connected with catenins, forming cadherin-catenin complexes, which are crucial for cell-to-cell adherence. Any dysfunction or destabilization of cadherin-catenin complex may result in tumor progression. Epithelial mesenchymal transition (EMT) is a mechanism in which epithelial cadherin (E-cadherin) expression is lost during tumor progression. However, during tumorigenesis, many processes take place, and downregulation of E-cadherin, nuclear β-catenin and p120 catenin (p120) signaling are among the most critical. Additional signaling pathways, such as Receptor tyrosine kinase (RTK), Rho GTPases, phosphoinositide 3-kinase (PI3K) and Hippo affect cadherin cell-cell adhesion and also contribute to tumor progression and metastasis. Many signaling pathways may be activated during tumorigenesis; thus, cadherin-targeting drugs seem to limit the progression of malignant tumor. This review discusses the role of cadherins in selected signaling mechanisms involved in tumor growth. The clinical importance of cadherin will be discussed in cases of human and animal cancers.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3602
Author(s):  
Archana P. Thankamony ◽  
Ayalur Raghu Subbalakshmi ◽  
Mohit Kumar Jolly ◽  
Radhika Nair

Lineage plasticity, the switching of cells from one lineage to another, has been recognized as a cardinal property essential for embryonic development, tissue repair and homeostasis. However, such a highly regulated process goes awry when cancer cells exploit this inherent ability to their advantage, resulting in tumorigenesis, relapse, metastasis and therapy resistance. In this review, we summarize our current understanding on the role of lineage plasticity in tumor progression and therapeutic resistance in multiple cancers. Lineage plasticity can be triggered by treatment itself and is reported across various solid as well as liquid tumors. Here, we focus on the importance of lineage switching in tumor progression and therapeutic resistance of solid tumors such as the prostate, lung, hepatocellular and colorectal carcinoma and the myeloid and lymphoid lineage switch observed in leukemias. Besides this, we also discuss the role of epithelial-mesenchymal transition (EMT) in facilitating the lineage switch in biphasic cancers such as aggressive carcinosarcomas. We also discuss the mechanisms involved, current therapeutic approaches and challenges that lie ahead in taming the scourge of lineage plasticity in cancer.


Sign in / Sign up

Export Citation Format

Share Document