scholarly journals Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis

2019 ◽  
Vol 27 (5) ◽  
pp. 1539-1553 ◽  
Author(s):  
Masataka Someda ◽  
Shunsuke Kuroki ◽  
Hitoshi Miyachi ◽  
Makoto Tachibana ◽  
Shin Yonehara

Abstract Among caspase family members, Caspase-8 is unique, with associated critical activities to induce and suppress death receptor-mediated apoptosis and necroptosis, respectively. Caspase-8 inhibits necroptosis by suppressing the function of receptor-interacting protein kinase 1 (RIPK1 or RIP1) and RIPK3 to activate mixed lineage kinase domain-like (MLKL). Disruption of Caspase-8 expression causes embryonic lethality in mice, which is rescued by depletion of either Ripk3 or Mlkl, indicating that the embryonic lethality is caused by activation of necroptosis. Here, we show that knockdown of Caspase-8 expression in embryoid bodies derived from ES cells markedly enhances retinoic acid (RA)-induced cell differentiation and necroptosis, both of which are dependent on Ripk1 and Ripk3; however, the enhancement of RA-induced cell differentiation is independent of Mlkl and necrosome formation. RA treatment obviously enhanced the expression of RA-specific target genes having the retinoic acid response element (RARE) in their promoter regions to induce cell differentiation, and induced marked expression of RIPK1, RIPK3, and MLKL to stimulate necroptosis. Caspase-8 knockdown induced RIPK1 and RIPK3 to translocate into the nucleus and to form a complex with RA receptor (RAR), and RAR interacting with RIPK1 and RIPK3 showed much stronger binding activity to RARE than RAR without RIPK1 or RIPK3. In Caspase-8-deficient as well as Caspase-8- and Mlkl-deficient mouse embryos, the expression of RA-specific target genes was obviously enhanced. Thus, Caspase-8, RIPK1, and RIPK3 regulate RA-induced cell differentiation and necroptosis both in vitro and in vivo.

2017 ◽  
Author(s):  
Masataka Someda ◽  
Shunsuke Kuroki ◽  
Makoto Tachibana ◽  
Shin Yonehara

AbstractCaspase-8, which is essential for death receptor-mediated apoptosis, inhibits necroptosis by suppressing the function of RIPK1 and RIPK3 to activate MLKL. We show that knockdown of caspase-8 expression in embryoid bodies derived from ES cells markedly enhances retinoic acid (RA)-induced cell differentiation and necroptosis, both of which are dependent on Ripkl and Ripk3. RA treatment obviously enhanced the expression of RA-specific genes having a retinoic acid response element (RARE) to induce cell differentiation, and induced marked expression of RIPK1, RIPK3 and MLKL to stimulate necroptosis. Caspase-8 knockdown induced RA receptor (RAR) to form a complex with RIPK1 and RIPK3 in the nucleus, and RAR interacting with RIPK1 and RIPK3 showed much stronger binding activity to RARE than RAR without RIPK1 or RIPK3. In Caspase-8-deficient mouse embryos, expression of RA-specific genes was obviously enhanced. Thus, caspase-8, RIPK1, and RIPK3 regulate RA-induced cell differentiation and necroptosis both in vitro and in vivo.


2005 ◽  
Vol 280 (16) ◽  
pp. 16484-16498 ◽  
Author(s):  
Eduardo Martinez-Ceballos ◽  
Pierre Chambon ◽  
Lorraine J. Gudas

Homeobox (Hox) genes encode a family of transcription factors that regulate embryonic patterning and organogenesis. In embryos, alterations of the normal pattern of Hox gene expression result in homeotic transformations and malformations. Disruption of theHoxa1gene, the most 3′ member of the Hoxa cluster and a retinoic acid (RA) direct target gene, results in abnormal ossification of the skull, hindbrain, and inner ear deficiencies, and neonatal death. We have generated Hoxa1-/-embryonic stem (ES) cells (named Hoxa1-15) from Hoxa1-/-mutant blastocysts to study the Hoxa1 signaling pathway. We have characterized in detail these Hoxa1-/-ES cells by performing microarray analyses, and by this technique we have identified a number of putative Hoxa-1 target genes, including genes involved in bone development (e.g. Col1a1,Postn/Osf2, and the bone sialoprotein gene orBSP), genes that are expressed in the developing brain (e.g. Nnat,Wnt3a,BDNF,RhoB, andGbx2), and genes involved in various cellular processes (e.g. M-RAS,Sox17,Cdkn2b,LamA1,Col4a1,Foxa2,Foxq1,Klf5, andIgf2). Cell proliferation assays and Northern blot analyses of a number of ES cell markers (e.g. Rex1,Oct3/4,Fgf4, andBmp4) suggest that the Hoxa1 protein plays a role in the inhibition of cell proliferation by RA in ES cells. Additionally, Hoxa1-/-ES cells express high levels of various endodermal markers, includingGata4andDab2, and express much lessFgf5after leukemia inhibitory factor (LIF) withdrawal. Finally, we propose a model in which the Hoxa1 protein mediates repression of endodermal differentiation while promoting expression of ectodermal and mesodermal characteristics.


2021 ◽  
Author(s):  
Danielle M. Spice ◽  
Joshua Dierolf ◽  
Gregory M. Kelly

AbstractHedgehog signaling is essential for vertebrate development, however, less is known about the negative regulators that influence this pathway during the differentiation of cell fates. Using the mouse P19 embryonal carcinoma cell model, Suppressor of Fused (SUFU), a negative regulator of the Hedgehog pathway, was investigated during retinoic acid-induced neural differentiation. We found Hedgehog signaling was activated in the early phase of neural differentiation and became inactive during terminal differentiation of neurons and astrocytes. SUFU, which regulates signaling at the level of GLI, remained relatively unchanged during the differentiation process, however SUFU loss through CRISPIR-Cas9 gene editing resulted in decreased cell proliferation and ectopic expression of Hedgehog target genes. Interestingly, SUFU-deficient cells were unable to differentiate in the absence of retinoic acid, but when differentiated in its presence they showed delayed and decreased astrocyte differentiation; neuron differentiation did not appear to be affected. Retinoic acid-induced differentiation also caused ectopic activation of Hh target genes in SUFU-deficient cells and while the absence of the GLI3 transcriptional inhibitor suggested the pathway was active, no full-length GLI3 was detected even though the message encoding Gli3 was present. Thus, the study would indicate the proper timing and proportion of glial cell differentiation requires SUFU, and its normal regulation of GLI3 to maintain Hh signaling in an inactive state.


2021 ◽  
Vol 55 (1) ◽  
pp. 235-263
Author(s):  
Daichao Xu ◽  
Chengyu Zou ◽  
Junying Yuan

The receptor-interacting protein kinase 1 (RIPK1) is recognized as a master upstream regulator that controls cell survival and inflammatory signaling as well as multiple cell death pathways, including apoptosis and necroptosis. The activation of RIPK1 kinase is extensively modulated by ubiquitination and phosphorylation, which are mediated by multiple factors that also control the activation of the NF-κB pathway. We discuss current findings regarding the genetic modulation of RIPK1 that controls its activation and interaction with downstream mediators, such as caspase-8 and RIPK3, to promote apoptosis and necroptosis. We also address genetic autoinflammatory human conditions that involve abnormal activation of RIPK1. Leveraging these new genetic and mechanistic insights, we postulate how an improved understanding of RIPK1 biology may support the development of therapeutics that target RIPK1 for the treatment of human inflammatory and neurodegenerative diseases.


2019 ◽  
Vol 124 (6) ◽  
pp. 947-960 ◽  
Author(s):  
Yuan Hu Xuan ◽  
Vikranth Kumar ◽  
Xiao Han ◽  
Sung Hoon Kim ◽  
Jin Hee Jeong ◽  
...  

Abstract Background and Aims INDETERMINATE DOMAIN 10 (IDD10) is a key transcription factor gene that activates the expression of a large number of NH4+-responsive genes including AMMONIUM TRANSPORTER 1;2 (AMT1;2). Primary root growth of rice (Oryza sativa) idd10 mutants is hypersensitive to NH4+. The involvement of CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE (CIPK) genes in the action of IDD10 on NH4+-mediated root growth was investigated. Methods Quantitative reverse transcription–PCR was used to analyse NH4+- and IDD10-dependent expression of CIPK genes. IDD10-regulated CIPK target genes were identified using electrophoretic mobility shift assays, chromatin immunoprecipitation and transient transcription assays. Root growth rate, ammonium content and 15N uptake of cipk mutants were measured to determine their sensitivity to NH4+ and to compare these phenotypes with those of idd10. The genetic relationship between CIPK9 OX and idd10 was investigated by crosses between the CIPK9 and IDD10 lines. Key Results AMT1;2 was overexpressed in idd10 to determine whether NH4+-hypersensitive root growth of idd10 resulted from limitations in NH4+ uptake or from low cellular levels of NH4+. High NH4+ levels in idd10/AMT1;2 OX did not rescue the root growth defect. Next, the involvement of CIPK genes in NH4+-dependent root growth and interactions between IDD10 and CIPK genes was investigated. Molecular analysis revealed that IDD10 directly activated transcription of CIPK9 and CIPK14. Expression of CIPK8, 9, 14/15 and 23 was sensitive to exogenous NH4+. Further studies revealed that cipk9 and idd10 had almost identical NH4+-sensitive root phenotypes, including low efficiency of 15NH4+ uptake. Analysis of plants containing both idd10 and CIPK9 OX showed that CIPK9 OX could rescue the NH4+-dependent root growth defects of idd10. Conclusions CIPK9 was involved in NH4+-dependent root growth and appeared to act downstream of IDD10. This information will be useful in future explorations of NH4+ signalling in plants.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 265-265 ◽  
Author(s):  
Barry H. Paw ◽  
Babette Gwynn ◽  
Nathaniel B. Langer ◽  
George C. Shaw ◽  
Amy J. Lambert ◽  
...  

Abstract We previously described a zebrafish mutant, frascati (frs), which exhibits profound hypochromic anemia and erythroid maturation arrest due to defects in mitochondrial iron uptake. Through positional cloning, we showed that the frs gene encodes a novel member of the vertebrate mitochondrial solute carrier family (SLC25), mitoferrin (mfrn, slc25a37). Mfrn, which is highly expressed in fetal and adult hematopoietic tissues of zebrafish and mouse, functions as the major mitochondrial iron importer essential for heme biosynthesis in vertebrate erythroblasts (Shaw GC, et al. 2006 Nature 440:96–100). To study the function of Mfrn in mammalian organisms, we identified an embryonic stem (ES) cell clone that harbors a gene trap b-geo cassette in intron 1 that inactivates the Mfrn locus. Homozygous disruption of the Mfrn locus results in embryonic lethality at E11.5 from profound anemia due to a failure of primitive erythropoiesis, confirming the requirement of Mfrn in mammalian development . Circumventing the embryonic lethality, we generated Mfrn−/− ES cells to study the role of Mfrn in definitive erythropoiesis by in vitro differentiation of embryoid bodies and mixed chimera assays. Mfrn−/− ES cells were defective in promoting the growth, differentiation, and hemoglobinization of both primitive and definitive erythroblasts by in vitro differentiation of embryoid bodies. In mixed chimera studies, Mfrn−/− ES cells failed to contribute to the erythroid compartment of adult mosaic mice, whereas measurable contribution of Mfrn−/− donor cells could be assayed in the non-erythroid, leukocyte compartment. Transcriptome microarray analysis, using the mouse Affymetrix GeneChip and the custom IronChip, revealed unexpected down-regulation of transcripts for heme-biosynthetic enzymes in Mfrn−/− erythroblasts. The block in protoprophyrin synthesis, as well as mitochondrial heme synthesis, could be partially rescued by the addition of aminolevulinic acid (ALA) to Mfrn−/− erythroblasts in vitro. Our data demonstrate that mitochondrial iron homeostasis, working through the Mfrn iron importer, coordinately regulates the synthetic pathways for porphyrin and heme in developing mammalian erythroblasts.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4599-4599
Author(s):  
Taisuke Kanaji ◽  
Takashi Okamura ◽  
Peter J. Newman

Abstract Abstract 4599 Filamin A is a major non-muscle actin binding protein that plays an important role in cross-linking cortical actin filaments into three-dimensional networks. In addition to its role as a cytoskeletal scaffolding molecule, Filamin A is also known to bind more than 30 other proteins, regulating their subcellular location and coordinating their ability to signal. To analyze the role of filamin A in mouse embryonic stem (ES) cell maturation, we generated filamin ALow ES cells by introducing a micro-RNA that specifically downregulates filamin A expression under the control of a cytomegalovirus promoter. Filamin ALow ES cells exhibited a more rounded morphology than did their wild-type filamin ANormal counterparts, and expressed increased levels of the ES cell transcription factor Nanog. In contrast, non-transfected cells in the same culture dish retained normal expression of filamin A, expressed low levels of Nanog, and exhibited a more elongated and spread phenotype characteristic of differentiating cells. Further evidence for a role for filamin A in ES cell differentiation was provided by the observation that withdrawing leukemia inhibitory factor (LIF) to induce ES cell differentiation was accompanied by increased expression of filamin A, a concomitant loss of Nanog expression, and acquisition of a differentiated morphology. Filamin ALow ES cells were able to retain their undifferentiated phenotype, as evaluated by alkaline phosphatase (Alp) activity, in the presence of a 10-fold lower concentration of LIF than was permissive for filamin ANormal ES cells, or following exposure to the differentiating agent, bone morphogenic protein 4 (BMP4). LIF-induced phosphorylation of ERK was decreased in filamin ALow relative to filamin ANormal ES cells, as was BMP-induced phosphorylation of Smad1/5 - two signaling pathways that initiate ES cell differentiation. Finally, embryoid bodies comprised of filamin ALow ES cells were unable to differentiate into CD41+ hematopoietic progenitor cells. Taken together, these data demonstrate that filamin A plays a previously unrecognized, but critical, scaffolding function that support both the LIF - ERK and BMP4 - Smad1/5 signaling pathways leading to ES and hematopoietic cell differentiation. Manipulation of filamin levels might be useful in the future to modulate the differentiation requirements for a variety of clinically-and therapeutically-useful stem cells. Disclosures: Newman: Novo Nordisk: Consultancy; New York Blood Center: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3618-3618
Author(s):  
Laurie A. Milner ◽  
Michael Kyba ◽  
George Q. Daley ◽  
Marlene Balys

Abstract Genetic modification of embryonic stem (ES) cells provides a powerful system for the correlation of in vitro and in vivo gene function, an issue relevant to transplantation, gene therapy and tissue engineering. ES cells also present unique obstacles to genetic manipulation, particularly with regard to epigenetic modulation of transgene expression. Strategies used to circumvent problems associated with methylation, histone deactylation, and chromatin remodeling include modification of vector sequences, insulators, and targeting transgenes to sites of “open” chromatin structure. Systems combining gene targeting with non-viral promoters have shown particular promise. In these studies, a variety of transgenes were introduced into Ainv15 ES cells and doxycycline (dox)-induced expression evaluated by flow cytometry and quantitative PCR. Ainv ES cells express a reverse tetracycline transactivator (rtTA) from the ROSA26 locus and allow Cre-mediated insertion of transgenes into the HPRT locus adjacent to a tetracycline response element (TRE). As expected, transgene expression in undifferentiated ES cells could be regulated by dose and time of exposure to dox. However, expression levels varied dramatically for different transgenes; variability was transgene-specific and did not directly correlate with transgene size or the presence of YFP sequences. In addition, regardless of initial expression level, all transgenes were transcriptionally silenced during ES cell differentiation as embryoid bodies (EBs). Distinct patterns of silencing occurred when cells were induced for 24 hours immediately preceding analysis or continuously from the start of EB differentiation. In both cases, a pronounced loss of expression occurred between days 4–7; however, EBs treated with dox for 24 hours maintained a population of cells capable of maximal induction through day 6, whereas continuously treated cells showed a marked decline in this population by day 4. These results suggested two distinct processes: a primary loss of inducibility independent of dox exposure and a secondary refractoriness of expressing cells to reinduction. The reproducible patterns further suggested that loss of TRE activity or general silencing of the HPRT locus were responsible. To distinguish between these possibilities, expression of HPRT and NeoR, which flank transgenes in targeted Ainv cells, were evaluated. In contrast to the loss of transgene expression, HPRT and NeoR expression remained stable or increased between EB day 3–7, indicating that silencing was not due to general chromatin remodeling within the locus. Expression of rtTA was also stable, excluding the possibility that silencing of the ROSA26 locus was responsible. We conclude that silencing in this system is due to a loss of TRE activity between EB days 4–7, and speculate that inhibitory factors produced by ES cells at this stage of differentiation are responsible. The findings underscore the complexities of gene regulation in ES cells, and raise the possibility that the capacity of cells to express transgenes may in part reflect intrinsic cell potential. In addition, if cells of particular lineages produce factors that interfere with TRE activity, there are obvious implications for using the Tet-On system for inducing gene expression in those lineages.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1928-1928
Author(s):  
Bulent Ozpolat ◽  
Ugur Akar ◽  
Magaly Barria ◽  
Gabriel Lopez-Berestein

Abstract Dysregulation of mRNA translation can contribute to malignant transformation. Translation initiation is a rate limiting step of mRNA translation and protein synthesis and plays a critical role in regulation of cell growth, proliferation and differentiation. We previously reported that ATRA induces translational suppression through multiple posttranscriptional mechanisms during terminal cell differentiation detected by proteomic analysis (Harris et al, Blood, 104 (5) 2004). Here we investigated the regulation of translation initiation and the role of eIF2α during terminal differentiation of myeloid leukemia cells. We found that ATRA and other granulocytic differentiation inducing agents, such as dimethyl sulfoxide (DMSO), arsenic trioxide (ATO) induce phosphorylation of eIF2α on serine 51 in promyelocytic leukemia (NB4) cells, indicating the suppression of translation initiation. However, monocytic/macrophagic differentiation of NB4 cells by phorbol 12-myristate 13-acetate (phorbol ester, PMA), or by ATRA in U937 and THP-1 myelomonoblastic myeloid leukemia (AML) cells, was not accompanied with induction of eIF2α phosphorylation. ATRA, ATO or DMSO-induced granulocytic differentiation closely correlated with induction of expression and phosphorylation/activation of protein kinase C-delta (PKCδ) on threonin 505 and serine 643 in NB4 cells. The specific PKCδ inhibitor, rottlerin, markedly inhibited ATRA-induced expression and phosphorylation (serin 51) of eIF2a in NB4 cells. Rottlerin reduced phosphorylation of eIF2α expression not only in the leukemia cells but also in solid tumor cells such as breast (MCF7) and pancreatic (Panc28) cancer cells. Because protein kinase R (PKR) has been shown to inhibit mRNA translation by inducing phosphorylation of eIF2α, we also examined whether this pathway is involved in ATRA-induced phosphorylation of eIF2α and whether it is downstream of PKCδ. We observed that ATRA induces expression and phosphorylation/activation of PKR in NB4 cells. Rottlerin inhibited ATRA-induced expression and activity of PKR , suggesting that activity of PKR is regulated by PKCδ in response to ATRA in NB4 cells. Overall, our data suggest that retinoic acid suppresses translation initiation through PKCδ/PKR/eIF2α pathway during granulocytic but not monocytic differentiation of acute myeloid leukemia cells. These results revealed a novel role of ATRA in granulocytic cell differentiation of myeloid cells. Because malignant cells usually have hyperactivated mRNA translation, targeting translational factors/regulators of initiation may offer new strategies for the treatment of myeloid leukemia cells.


2017 ◽  
Vol 114 (23) ◽  
pp. 5838-5845 ◽  
Author(s):  
Bony De Kumar ◽  
Hugo J. Parker ◽  
Mark E. Parrish ◽  
Jeffrey J. Lange ◽  
Brian D. Slaughter ◽  
...  

Homeobox a1 (Hoxa1) is one of the most rapidly induced genes in ES cell differentiation and it is the earliest expressed Hox gene in the mouse embryo. In this study, we used genomic approaches to identify Hoxa1-bound regions during early stages of ES cell differentiation into the neuro-ectoderm. Within 2 h of retinoic acid treatment, Hoxa1 is rapidly recruited to target sites that are associated with genes involved in regulation of pluripotency, and these genes display early changes in expression. The pattern of occupancy of Hoxa1 is dynamic and changes over time. At 12 h of differentiation, many sites bound at 2 h are lost and a new cohort of bound regions appears. At both time points the genome-wide mapping reveals that there is significant co-occupancy of Nanog (Nanog homeobox) and Hoxa1 on many common target sites, and these are linked to genes in the pluripotential regulatory network. In addition to shared target genes, Hoxa1 binds to regulatory regions of Nanog, and conversely Nanog binds to a 3′ enhancer of Hoxa1. This finding provides evidence for direct cross-regulatory feedback between Hoxa1 and Nanog through a mechanism of mutual repression. Hoxa1 also binds to regulatory regions of Sox2 (sex-determining region Y box 2), Esrrb (estrogen-related receptor beta), and Myc, which underscores its key input into core components of the pluripotential regulatory network. We propose a model whereby direct inputs of Nanog and Hoxa1 on shared targets and mutual repression between Hoxa1 and the core pluripotency network provides a molecular mechanism that modulates the fine balance between the alternate states of pluripotency and differentiation.


Sign in / Sign up

Export Citation Format

Share Document