scholarly journals A comprehensive interaction study provides a potential domain interaction network of human death domain superfamily proteins

Author(s):  
Wei Zhou ◽  
Naoe Kaneko ◽  
Tomoya Nakagita ◽  
Hiroyuki Takeda ◽  
Junya Masumoto

AbstractHuman death domain superfamily proteins (DDSPs) play important roles in many signaling pathways involved in cell death and inflammation. Disruption or constitutive activation of these DDSP interactions due to inherited gene mutations is closely related to immunodeficiency and/or autoinflammatory diseases; however, responsible gene mutations have not been found in phenotypical diagnosis of these diseases. In this study, we comprehensively investigated the interactions of death-fold domains to explore the signaling network mediated by human DDSPs. We obtained 116 domains of DDSPs and conducted a domain–domain interaction assay of 13,924 reactions in duplicate using amplified luminescent proximity homogeneous assay. The data were mostly consistent with previously reported interactions. We also found new possible interactions, including an interaction between the caspase recruitment domain (CARD) of CARD10 and the tandem CARD–CARD domain of NOD2, which was confirmed by reciprocal co-immunoprecipitation. This study enables prediction of the interaction network of human DDSPs, sheds light on pathogenic mechanisms, and will facilitate identification of drug targets for treatment of immunodeficiency and autoinflammatory diseases.

2019 ◽  
Vol 19 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Tianyi Zhao ◽  
Donghua Wang ◽  
Yang Hu ◽  
Ningyi Zhang ◽  
Tianyi Zang ◽  
...  

Background: More and more scholars are trying to use it as a specific biomarker for Alzheimer’s Disease (AD) and mild cognitive impairment (MCI). Multiple studies have indicated that miRNAs are associated with poor axonal growth and loss of synaptic structures, both of which are early events in AD. The overall loss of miRNA may be associated with aging, increasing the incidence of AD, and may also be involved in the disease through some specific molecular mechanisms. Objective: Identifying Alzheimer’s disease-related miRNA can help us find new drug targets, early diagnosis. Materials and Methods: We used genes as a bridge to connect AD and miRNAs. Firstly, proteinprotein interaction network is used to find more AD-related genes by known AD-related genes. Then, each miRNA’s correlation with these genes is obtained by miRNA-gene interaction. Finally, each miRNA could get a feature vector representing its correlation with AD. Unlike other studies, we do not generate negative samples randomly with using classification method to identify AD-related miRNAs. Here we use a semi-clustering method ‘one-class SVM’. AD-related miRNAs are considered as outliers and our aim is to identify the miRNAs that are similar to known AD-related miRNAs (outliers). Results and Conclusion: We identified 257 novel AD-related miRNAs and compare our method with SVM which is applied by generating negative samples. The AUC of our method is much higher than SVM and we did case studies to prove that our results are reliable.


2020 ◽  
Vol 8 ◽  
Author(s):  
Ushashi Banerjee ◽  
Santhosh Sankar ◽  
Amit Singh ◽  
Nagasuma Chandra

Tuberculosis is one of the deadliest infectious diseases worldwide and the prevalence of latent tuberculosis acts as a huge roadblock in the global effort to eradicate tuberculosis. Most of the currently available anti-tubercular drugs act against the actively replicating form of Mycobacterium tuberculosis (Mtb), and are not effective against the non-replicating dormant form present in latent tuberculosis. With about 30% of the global population harboring latent tuberculosis and the requirement for prolonged treatment duration with the available drugs in such cases, the rate of adherence and successful completion of therapy is low. This necessitates the discovery of new drugs effective against latent tuberculosis. In this work, we have employed a combination of bioinformatics and chemoinformatics approaches to identify potential targets and lead candidates against latent tuberculosis. Our pipeline adopts transcriptome-integrated metabolic flux analysis combined with an analysis of a transcriptome-integrated protein-protein interaction network to identify perturbations in dormant Mtb which leads to a shortlist of 6 potential drug targets. We perform a further selection of the candidate targets and identify potential leads for 3 targets using a range of bioinformatics methods including structural modeling, binding site association and ligand fingerprint similarities. Put together, we identify potential new strategies for targeting latent tuberculosis, new candidate drug targets as well as important lead clues for drug design.


2020 ◽  
Author(s):  
Qiao Liu ◽  
Bohyun Lee ◽  
Lei Xie

AbstractAn increasing body of evidence suggests that microbes are not only strongly associated with many human diseases but also responsible for the efficacy, resistance, and toxicity of drugs. Small-molecule drugs which can precisely fine-tune the microbial ecosystem on the basis of individual patients may revolutionize biomedicine. However, emerging endeavors in small-molecule microbiome drug discovery continue to follow a conventional “one-drug-one-target-one-disease” process. It is often insufficient and less successful in tackling complex systematic diseases. A systematic pharmacology approach that intervenes multiple interacting pathogenic species in the microbiome, could offer an attractive alternative solution. Advances in the Human Microbiome Project have provided numerous genomics data to study microbial interactions in the complex microbiome community. Integrating microbiome data with chemical genomics and other biological information enables us to delineate the landscape for the small molecule modulation of the human microbiome network. In this paper, we construct a disease-centric signed microbe-microbe interaction network using metabolite information of microbes and curated microbe effects on human health from published work. We develop a Signed Random Walk with Restart algorithm for the accurate prediction of pathogenic and commensal species. With a survey on the druggable and evolutionary space of microbe proteins, we find that 8-10% of them can be targeted by existing drugs or drug-like chemicals and that 25% of them have homologs to human proteins. We also demonstrate that drugs for diabetes are enriched in the potential inhibitors that target pathogenic microbe without affecting the commensal microbe, thus can be repurposed to modulate the microbiome ecosystem. We further show that periplasmic and cellular outer membrane proteins are overrepresented in the potential drug targets set in pathogenic microbe, but not in the commensal microbe. The systematic studies of polypharmacological landscape of the microbiome network may open a new avenue for the small-molecule drug discovery of microbiome.Author SummaryAs one of the most abundant components in human bodies, the microbiome has an extensive impact on human health. Pathogenic-microbes have become emerging potential therapeutic targets. Small-molecule drugs that only intervene in the growth of a specific pathogenic microbe without considering the interacting dynamics of the microbiome community may disrupt the ecosystem homeostasis, thus can cause drug side effect or prompt drug resistance. To discover novel drugs for safe and effective microbe-targeting therapeutics, a systematic approach is needed to fine-tune the microbiome ecosystem. To this end, we built a disease-centric signed microbe-microbe interaction network which accurately predicts the pathogenic or commensal effect of microbe on human health. Based on annotated and predicted pathogens and commensal species, we performed a systematic survey on therapeutic space and target landscape of existing drugs for modulating the microbiome ecosystem. Enrichment analysis on potential microbe-targeting drugs shows that drugs for diabetes could be repurposed to maintain the healthy state of microbiome. Furthermore, periplasmic and cellular outer membrane proteins are overrepresented in the potential drug targets of pathogenic-microbes, but not in proteins that perturb commensal-microbes. Our study may open a new avenue for the small molecule drug discovery of microbiome.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Gaston K. Mazandu ◽  
Nicola J. Mulder

Technological developments in large-scale biological experiments, coupled with bioinformatics tools, have opened the doors to computational approaches for the global analysis of whole genomes. This has provided the opportunity to look at genes within their context in the cell. The integration of vast amounts of data generated by these technologies provides a strategy for identifying potential drug targets within microbial pathogens, the causative agents of infectious diseases. As proteins are druggable targets, functional interaction networks between proteins are used to identify proteins essential to the survival, growth, and virulence of these microbial pathogens. Here we have integrated functional genomics data to generate functional interaction networks between Mycobacterium tuberculosis proteins and carried out computational analyses to dissect the functional interaction network produced for identifying drug targets using network topological properties. This study has provided the opportunity to expand the range of potential drug targets and to move towards optimal target-based strategies.


Sign in / Sign up

Export Citation Format

Share Document