scholarly journals Protopanaxadiol inhibits epithelial–mesenchymal transition of hepatocellular carcinoma by targeting STAT3 pathway

2019 ◽  
Vol 10 (9) ◽  
Author(s):  
Lan Yang ◽  
Xue-ying Zhang ◽  
Kun Li ◽  
An-ping Li ◽  
Wen-dong Yang ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Haoran Li ◽  
Dingan Luo ◽  
Lakshmi Huttad ◽  
Mao Zhang ◽  
Youpeng Wang ◽  
...  

Receptor interacting serine/threonine kinase 4 (RIPK4) is a member of the threonine/serine protein kinase family; it plays related functions in a variety of tumours, but its biological function has not been fully revealed. It has been reported that it is differentially expressed in hepatocellular carcinoma (HCC). Our research aimed to reveal the role of RIPK4 in the progression of HCC and to reveal the biological behaviour of RIPK4 in HCC. We analysed the differences in RIPK4 expression in HCC by using a publicly available data set. By using PCR, Western blotting and immunohistochemical staining methods, we detected the expression level of RIPK4 in HCC patient specimens and studied the relationship between the expression of RIPK4 and the clinicopathological features of HCC patients. The prognostic data were combined to analyse the relationship between RIPK4 and HCC patient survival and tumour recurrence. We found that the expression level of RIPK4 in nontumour tissues was significantly higher than that in tumour tissues, and the level of RIPK4 was significantly positively correlated with postoperative survival and recurrence in HCC patients. Further, our study found that RIPK4 inhibits the progression of HCC by influencing the invasion and metastasis of HCC and that overexpression of RIPK4 reduces the invasion and metastasis of HCC by inhibiting epithelial-mesenchymal transition (EMT) and the STAT3 pathway. In in vivo experiments, overexpression of RIPK4 stably inhibited HCC metastasis. To summarize, our research revealed the relationship between RIPK4 and the prognosis of patients with HCC. We discovered that RIPK4 affects the invasion and metastasis of HCC through the EMT and STAT3 pathways. Targeted inhibition of the RIPK4 gene and the STAT3 pathway may be potential therapeutic strategies for inhibiting the postoperative recurrence and metastasis of HCC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mengying Teng ◽  
Chunyan Hu ◽  
Bingmo Yang ◽  
Wei Xiao ◽  
Qian Zhou ◽  
...  

Abstract Background Tumor migration and invasion is a complex and diverse process that involves the epithelial–mesenchymal transition (EMT) of tumor cells and degradation of the extracellular matrix by matrix metalloproteases (MMPs). Mortalin is an important oncogene. It has been reported to play an important role in tumor migration and invasion through various signaling pathways, but the underlying mechanism is not fully understood. Methods Here, we investigated the role of mortalin in the migration of the hepatocellular carcinoma (HCC) cell lines HepG2 and HCCLM3. Results The overexpression of mortalin in HepG2 cells decreased the protein level of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and activated the phosphorylation and acetylation of STAT3, thereby up-regulating matrix metalloproteinase 9 (MMP9) and promoting cell migration and invasion. In contrast, in HCCLM3 cells, mortalin knockdown increased the expression of RECK, inhibited the STAT3 pathway and the activity of MMP9, and inhibited cell migration and invasion. Furthermore, we found that salvianolic acid B, a caffeic acid phenethyl ester analog, specifically bound to mortalin and increased the degradation of mortalin proteasomes through ubiquitination, thereby up-regulating RECK, inhibiting STAT3, and finally inhibiting the migration and invasion of HCC cells. Conclusion Our work suggested that mortalin is a potential therapeutic target for hepatocellular carcinoma.


Author(s):  
Xingrong Zheng ◽  
Jiaxin Lin ◽  
Hewei Wu ◽  
Zhishuo Mo ◽  
Yunwen Lian ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Peng Xia ◽  
Hao Zhang ◽  
Kequan Xu ◽  
Xiang Jiang ◽  
Meng Gao ◽  
...  

AbstractHepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, there still remains a lack of effective diagnostic and therapeutic targets for this disease. Increasing evidence demonstrates that RNA modifications play an important role in the progression of HCC, but the role of the N7-methylguanosine (m7G) methylation modification in HCC has not been properly evaluated. Thus, the goal of the present study was to investigate the function and mechanism of the m7G methyltransferase WD repeat domain 4 (WDR4) in HCC as well as its clinical relevance and potential value. We first verified the high expression of WDR4 in HCC and observed that upregulated WDR4 expression increased the m7G methylation level in HCC. WDR4 promoted HCC cell proliferation by inducing the G2/M cell cycle transition and inhibiting apoptosis in addition to enhancing metastasis and sorafenib resistance through epithelial-mesenchymal transition (EMT). Furthermore, we observed that c-MYC (MYC) can activate WDR4 transcription and that WDR4 promotes CCNB1 mRNA stability and translation to enhance HCC progression. Mechanistically, we determined that WDR4 enhances CCNB1 translation by promoting the binding of EIF2A to CCNB1 mRNA. Furthermore, CCNB1 was observed to promote PI3K and AKT phosphorylation in HCC and reduce P53 protein expression by promoting P53 ubiquitination. In summary, we elucidated the MYC/WDR4/CCNB1 signalling pathway and its impact on PI3K/AKT and P53. Furthermore, the result showed that the m7G methyltransferase WDR4 is a tumour promoter in the development and progression of HCC and may act as a candidate therapeutic target in HCC treatment.


Oncotarget ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 1703-1713 ◽  
Author(s):  
Tianxiu Dong ◽  
Yu Zhang ◽  
Yaodong Chen ◽  
Pengfei Liu ◽  
Tingting An ◽  
...  

2015 ◽  
Vol 33 (6) ◽  
pp. 771-779 ◽  
Author(s):  
Naoshi Nishida ◽  
Masayuki Kitano ◽  
Toshiharu Sakurai ◽  
Masatoshi Kudo

Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide, and prognosis remains unsatisfactory when the disease is diagnosed at an advanced stage. Many molecular targeted agents are being developed for the treatment of advanced HCC; however, the only promising drug to have been developed is sorafenib, which acts as a multi-kinase inhibitor. Unfortunately, a subgroup of HCC is resistant to sorafenib, and the majority of these HCC patients show disease progression even after an initial satisfactory response. To date, a number of studies have examined the underlying mechanisms involved in the response to sorafenib, and trials have been performed to overcome the acquisition of drug resistance. The anti-tumor activity of sorafenib is largely attributed to the blockade of the signals from growth factors, such as vascular endothelial growth factor receptor and platelet-derived growth factor receptor, and the downstream RAF/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK cascade. The activation of an escape pathway from RAF/MEK/ERK possibly results in chemoresistance. In addition, there are several features of HCCs indicating sorafenib resistance, such as epithelial-mesenchymal transition and positive stem cell markers. Here, we review the recent reports and focus on the mechanism and prediction of chemoresistance to sorafenib in HCC.


2016 ◽  
Vol 381 (2) ◽  
pp. 380-390 ◽  
Author(s):  
Changwei Dou ◽  
Zhikui Liu ◽  
Meng Xu ◽  
Yuli Jia ◽  
Yufeng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document