scholarly journals Exosomes in ovarian cancer ascites promote epithelial–mesenchymal transition of ovarian cancer cells by delivery of miR-6780b-5p

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Jing Cai ◽  
Lanqing Gong ◽  
Guodong Li ◽  
Jing Guo ◽  
Xiaoqing Yi ◽  
...  

AbstractThe poor prognosis of ovarian cancer is mainly due to metastasis, and the specific mechanism underlying ovarian cancer metastasis is not clear. Ascites-derived exosomes (ADEs) play an important role in the progression of ovarian cancer, but the mechanism is unknown. Here, we found that ADEs promoted ovarian cancer metastasis not only in vitro but also in vivo. This promotive function was based on epithelial–mesenchymal transition (EMT) of ovarian cancer cells. Bioinformatics analysis of RNA sequencing microarray data indicated that miR-6780b-5p may be the key microRNA (miRNA) in ADEs that facilitates cancer metastasis. Moreover, the expression of exosomal miR-6780b-5p correlated with tumor metastasis in ovarian cancer patients. miR-6780b-5p overexpression promoted and miR-6780b-5p downregulation suppressed EMT of ovarian cancer cells. These results suggest that ADEs transfer miR-6780b-5p to ovarian cancer cells, promoting EMT and finally facilitating ovarian cancer metastasis.

2021 ◽  
Vol 10 ◽  
Author(s):  
Arthur-Quan Tran ◽  
Stephanie A. Sullivan ◽  
Leo Li-Ying Chan ◽  
Yajie Yin ◽  
Wenchuan Sun ◽  
...  

SPR965 is an inhibitor of PI3K and mTOR C1/C2 and has demonstrated anti-tumorigenic activity in a variety of solid tumors. We sought to determine the effects of SPR965 on cell proliferation and tumor growth in human serous ovarian cancer cell lines and a transgenic mouse model of high grade serous ovarian cancer (KpB model) and identify the underlying mechanisms by which SPR965 inhibits cell and tumor growth. SPR965 showed marked anti-proliferative activity by causing cell cycle arrest and inducing cellular stress in ovarian cancer cells. Treatment with SPR965 significantly inhibited tumor growth in KpB mice, accompanied by downregulation of Ki67 and VEGF and upregulation of Bip expression in ovarian tumors. SPR965 also inhibited adhesion and invasion through induction of the epithelial–mesenchymal transition process. As expected, downregulation of phosphorylation of AKT and S6 was observed in SPR965-treated ovarian cancer cells and tumors. Our results suggest that SPR965 has significant anti-tumorigenic effects in serous ovarian cancer in vitro and in vivo. Thus, SPR965 should be evaluated as a promising targeted agent in future clinical trials of ovarian cancer.


Author(s):  
Hongwei Tan ◽  
Jin Qi ◽  
Guanghua Chu ◽  
Zhaoyang Liu

Tripartite motif 16 (TRIM16), a member of the RING B-box coiled-coil (RBCC)/tripartite motif (TRIM) protein family, has been shown to play a role in tumor development and progression. However, the role of TRIM16 in ovarian cancer has never been revealed. Thus, in this study, we investigated the roles and mechanisms of TRIM16 in ovarian cancer. Our results demonstrated that TRIM16 expression was low in ovarian cancer cell lines. In addition, overexpression of TRIM16 significantly inhibited the migration and invasion in vitro, as well as suppressed the epithelial‐mesenchymal transition (EMT) phenotype in ovarian cancer cells. Furthermore, overexpression of TRIM16 greatly inhibited the protein expression levels of Shh, Smo, Ptc, Gli-1, MMP2, and MMP9 in ovarian cancer cells. Taken together, these results strongly suggest that TRIM16 inhibits the migration and invasion via suppressing the Sonic hedgehog signaling pathway in ovarian cancer cells. Thus, TRIM16 may be a novel potential therapeutic target for ovarian cancer.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Min Deng ◽  
Xiaodong Cai ◽  
Ling Long ◽  
Linying Xie ◽  
Hongmei Ma ◽  
...  

Abstract Background Accumulating evidence indicates that CD36 initiates metastasis and correlates with an unfavorable prognosis in cancers. However, there are few reports regarding the roles of CD36 in initiation and metastasis of cervical cancer. Methods Using immunohistochemistry, we analyzed 133 cervical cancer samples for CD36 protein expression levels, and then investigated the correlation between changes in its expression and clinicopathologic parameters. The effect of CD36 expression on the epithelial–mesenchymal transition (EMT) in cervical cancer cells was evaluated by Western immunoblotting analysis. In vitro invasion and in vivo metastasis assays were also used to evaluate the role of CD36 in cervical cancer metastasis. Results In the present study, we confirmed that CD36 was highly expressed in cervical cancer samples relative to normal cervical tissues. Moreover, overexpression of CD36 promoted invasiveness and metastasis of cervical cancer cells in vitro and in vivo, while CD36 knockdown suppressed proliferation, migration, and invasiveness. We demonstrated that TGF-β treatment attenuated E-cadherin expression and enhanced the expression levels of CD36, vimentin, slug, snail, and twist in si-SiHa, si-HeLa, and C33a–CD36 cells, suggesting that TGF-β synergized with CD36 on EMT via active CD36 expression. We also observed that the expression levels of TGF-β in si-SiHa cells and si-HeLa cells were down-regulated, whereas the expression levels of TGF-β were up-regulated in C33a–CD36 cells. These results imply that CD36 and TGF-β interact with each other to promote the EMT in cervical cancer. Conclusions Our findings suggest that CD36 is likely to be an effective target for guiding individualized clinical therapy of cervical cancer.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1421-1421
Author(s):  
Min Soon Cho ◽  
Qianghua Hu ◽  
Rajesha Rupaimoole ◽  
Anil Sood ◽  
Vahid Afshar-Kharghan

Abstract We have shown that complement component 3 (C3) is expressed in malignant ovarian epithelial cells and enhances cell proliferation in vitro and tumor growth in vivo. C3 is secreted by cancer cells into the tumor microenvironment and promotes tumor growth through an autocrine loop. To understand the mechanism of upregulation of C3 expression in malignant epithelial cells, we studied the transcriptional regulation of C3, and found that TWIST1, a major regulator of EMT, binds to the C3 promoter and regulates C3 transcription. Knockdown of the TWIST1 gene reduced C3 mRNA, and TWIST1 overexpression increased C3 mRNA. TWIST1 promotes epithelial-mesenchymal transition (EMT) during normal development and in metastasis of malignant tumors. An important marker of EMT is a reduction in the surface expression of E-cadherin on cells facilitating migration and invasion of these cells. TWIST1 is a transcriptional repressor of E-cadherin; and because TWIST1 increases C3 expression, we investigated whether C3 is also a negative regulator of E-cadherin expression. We overexpressed C3 in ovarian cancer cells by stable transduction of lentivirus carrying C3 cDNA. Overexpression of C3 was associated with 32% reduction in the expression of E-cadherin resulting in enhanced migration ability of cells by 2.3 folds and invasiveness by 1.75 folds, as compared to control cells transduced with control lentivirus. To investigate whether TWIST1-induced reduction in E-cadherin is C3-mediated or not, we studied the effect of TWIST1 overexpression simultaneous with C3 knockdown in ovarian cancer cells. Overexpression of TWIST1 alone resulted in 70% reduction in E-cadherin mRNA and this was completely reversed after simultaneous C3 knockdown in these cells. To investigate the correlation between C3 and TWIST1 in vivo, we studied the co-expression of these two proteins in mouse embryos (physiologic EMT) and in malignant tumors (pathologic EMT). Given the role of EMT in embryogenesis we immunostained mouse embryos at different stages of development, using antibodies against TWIST1 or C3. Transverse section of 9.5-day post-coitum (9.5dpc) mouse embryos showed co-expression of TWIST1 and C3 in otocyst (ot) and hindbrain (hb) of neural crest. In the whole-mounted 11.5dpc mouse embryos, C3 and TWIST1 were co-expressed in limb buds. Given the role of EMT in malignancy, tumors induced in mice after intraperitoneal injection of murine ovarian cancer cells were resected and immunostained for C3 and TWIST1 proteins. TWIST1 and C3 co-localized at tumor edges, where EMT and tumor cells migration occur. Taken together, these data provide evidence that TWIST1 regulates C3 expression, and C3 promotes EMT through E-cadherin. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Priyanka Chakraborty ◽  
Jason T George ◽  
Shubham Tripathi ◽  
Herbert Levine ◽  
Mohit Kumar Jolly

AbstractThe Epithelial-mesenchymal transition (EMT) is a cellular process implicated in embryonic development, wound healing, and pathological conditions such as cancer metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive behavior characterized by drug resistance, tumor-initiation potential, and the ability to evade immune system. Recent in silico, in vitro, and in vivo evidence indicates that EMT is not an all-or-none process; instead, cells stably acquire one or more hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive than purely epithelial or mesenchymal cell populations. Thus, the EMT status of cancer cells can prove to be a critical estimate of patient prognosis. Recent attempts have employed different transcriptomics signatures to quantify EMT status in cell lines and patient tumors. However, a comprehensive comparison of these methods, including their accuracy in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare three distinct metrics that score EMT on a continuum, based on the transcriptomics signature of individual samples. Our results demonstrate that these methods exhibit good concordance among themselves in quantifying the extent of EMT in a given sample. Moreover, scoring EMT using any of the three methods discerned that cells undergo varying extents of EMT across tumor types. Separately, our analysis also identified tumor types with maximum variability in terms of EMT and associated an enrichment of hybrid E/M signatures in these samples. Moreover, we also found that the multinomial logistic regression (MLR) based metric was capable of distinguishing between ‘pure’ individual hybrid E/M vs. mixtures of epithelial (E) and mesenchymal (M) cells. Our results, thus, suggest that while any of the three methods can indicate a generic trend in the EMT status of a given cell, the MLR method has two additional advantages: a) it uses a small number of predictors to calculate the EMT score, and b) it can predict from the transcriptomic signature of a population whether it is comprised of ‘pure’ hybrid E/M cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.


Author(s):  
Jingjing Zhang ◽  
Yun Li ◽  
Hua Liu ◽  
Jiahui Zhang ◽  
Jie Wang ◽  
...  

Abstract Background The development of lethal cancer metastasis depends on the dynamic interactions between cancer cells and the tumor microenvironment, both of which are embedded in the extracellular matrix (ECM). The acquisition of resistance to detachment-induced apoptosis, also known as anoikis, is a critical step in the metastatic cascade. Thus, a more in-depth and systematic analysis is needed to identify the key drivers of anoikis resistance. Methods Genome-wide CRISPR/Cas9 knockout screen was used to identify critical drivers of anoikis resistance using SKOV3 cell line and found protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) as a candidate. Quantitative real-time PCR (qRT-PCR) and immune-histochemistry (IHC) were used to measure differentially expressed PCMT1 in primary tissues and metastatic cancer tissues. PCMT1 knockdown/knockout and overexpression were performed to investigate the functional role of PCMT1 in vitro and in vivo. The expression and regulation of PCMT1 and integrin-FAK-Src pathway were evaluated using immunoprecipitation followed by mass spectrometry (IP-MS), western blot analysis and live cell imaging. Results We found that PCMT1 enhanced cell migration, adhesion, and spheroid formation in vitro. Interestingly, PCMT1 was released from ovarian cancer cells, and interacted with the ECM protein LAMB3, which binds to integrin and activates FAK-Src signaling to promote cancer progression. Strikingly, treatment with an antibody against extracellular PCMT1 effectively reduced ovarian cancer cell invasion and adhesion. Our in vivo results indicated that overexpression of PCMT1 led to increased ascites formation and distant metastasis, whereas knockout of PCMT1 had the opposite effect. Importantly, PCMT1 was highly expressed in late-stage metastatic tumors compared to early-stage primary tumors. Conclusions Through systematically identifying the drivers of anoikis resistance, we uncovered the contribution of PCMT1 to focal adhesion (FA) dynamics as well as cancer metastasis. Our study suggested that PCMT1 has the potential to be a therapeutic target in metastatic ovarian cancer.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 662 ◽  
Author(s):  
Martyna Pakuła ◽  
Paweł Uruski ◽  
Arkadiusz Niklas ◽  
Aldona Woźniak ◽  
Dariusz Szpurek ◽  
...  

The study was designed to establish whether high aggressiveness of high-grade serous ovarian cancer cells (HGSOCs), which display rapid growth, advanced stage at diagnosis and the highest mortality among all epithelial ovarian cancer histotypes, may be linked with a specific pattern of mesothelial-mesenchymal transition (MMT) elicited by these cells in normal peritoneal mesothelial cells (PMCs). Experiments were performed on primary PMCs, stable and primary ovarian cancer cells, tumors from patients with ovarian cancer, and laboratory animals. Results of in vitro and in vivo tests showed that MMT triggered by HGSOCs (primary cells and OVCAR-3 line) is far more pronounced than the process evoked by cells representing less aggressive ovarian cancer histotypes (A2780, SKOV-3). Mechanistically, HGSOCs induce MMT via Smad 2/3, ILK, TGF-β1, HGF, and IGF-1, whereas A2780 and SKOV-3 cells via exclusively Smad 2/3 and HGF. The conditioned medium from PMCs undergoing MMT promoted the progression of cancer cells and the effects exerted by the cells triggered to undergo MMT by the HGSOCs were significantly stronger than those related to the activity of their less aggressive counterparts. Our findings indicate that MMT in PMCs provoked by HGSOCs is stronger, proceeds via different mechanisms and has more procancerous characteristics than MMT provoked by less aggressive cancer histotypes, which may at least partly explain high aggressiveness of HGSOCs.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhenyu Zhang ◽  
Minghui Chang ◽  
Xingguo Song ◽  
Kangyu Wang ◽  
Wenjuan Sun ◽  
...  

TIPE1, a newly identified member in TIPE (TNFAIP8) family, plays an important role in tumorigenesis and immune regulation, but its role in ovarian cancer, especially in tumor metastasis, remains unknown. In the current study, we aimed to reveal the protein expression spectrum of TIPE1 in normal human tissues and explored its relationship with metastasis in ovarian cancer. The results of IHC staining showed that TIPE1 protein was not only detected in cytoplasm in most human tissues but also expressed in both cytoplasm and nucleus in squamous epithelium and some epithelial-derived cells with secretory functions, such as esophagus, cervix uteri and ovary, and thyroid gland. Moreover, TIPE1 protein was downregulated in ovarian cancer tissues compared with that in the paracancerous. More importantly, TIPE1 suppressed tumorigenesis and metastasis of ovarian cancer in vitro and in vivo, as evidence shows its ability to suppress growth, colony formation, migration, and epithelial-mesenchymal transition (EMT) of ovarian cancer. Taken together, our results demonstrate the suppressor role of TIPE1 in ovarian cancer metastasis, indicating TIPE1 might be a metastasis predictor and a novel therapeutic target for ovarian cancer.


2020 ◽  
Author(s):  
Yujia Yang ◽  
Li Yuan ◽  
Bing Yang

Abstract Background: Ovarian cancer is one of the most common malignancy of the female reproductive system. Hsa‐miR‐15a‐5p (miR‐15a-5p) has been reported with tumor‐suppressing roles in various cancers. This study aims to determine the role of miR-15a-5p during the progression of ovarian cancer. Methods: We used bioinformatics, luciferase reporter assays, wound-healing, transwell invasion assays, quantitative Real-time polymerase chain reaction (qRT-PCR) and Western blot to dissect the molecular mechanism of how miR-15a-5p may cause metastasis in ovarian cancer. Results: The upregulation of miR‐15a-5p inhibited growth, migration and invasion in ovarian cancer cells. Furthermore, miR-15a-5p suppressed epithelial mesenchymal transition (EMT) of ovarian cancer cell in vitro, evidenced by expression alteration of E‐cadherin and vimentin. Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) was identified as the direct target of miR-15a-5p and downregulated by miR-15a-5p. The inhibitory effect of miR-15a-5p on migration, invasion and EMT was rescued by PELP1. Additionally, downregulation of PELP1 mimicked the suppressive impact of miR-15a-5p on ovarian carcinoma cells. Conclusions: Our data indicated that miR-15a-5p inhibited migration, invasion and EMT of ovarian cancer cells by targeting PELP1, which might relate to the progression and metastasis of ovarian cancer.


Author(s):  
Conghui Wang ◽  
Jiaying Wang ◽  
Xiameng Shen ◽  
Mingyue Li ◽  
Yongfang Yue ◽  
...  

Abstract Background Metastasis is the key cause of death in ovarian cancer patients. To figure out the biological nature of cancer metastasis is essential for developing effective targeted therapy. Here we investigate how long non-coding RNA (lncRNA) SPOCD1-AS from ovarian cancer extracellular vesicles (EVs) remodel mesothelial cells through a mesothelial-to-mesenchymal transition (MMT) manner and facilitate peritoneal metastasis. Methods EVs purified from ovarian cancer cells and ascites of patients were applied to mesothelial cells. The MMT process of mesothelial cells was assessed by morphology observation, western blot analysis, migration assay and adhesion assay. Altered lncRNAs of EV-treated mesothelial cells were screened by RNA sequencing and identified by qRT-PCR. SPOCD1-AS was overexpressed or silenced by overexpression lentivirus or shRNA, respectively. RNA pull-down and RNA immunoprecipitation assays were conducted to reveal the mechanism by which SPOCD1-AS remodeled mesothelial cells. Interfering peptides were synthesized and applied. Ovarian cancer orthotopic implantation mouse model was established in vivo. Results We found that ovarian cancer-secreted EVs could be taken into recipient mesothelial cells, induce the MMT phenotype and enhance cancer cell adhesion to mesothelial cells. Furthermore, SPOCD1-AS embedded in ovarian cancer-secreted EVs was transmitted to mesothelial cells to induce the MMT process and facilitate peritoneal colonization in vitro and in vivo. SPOCD1-AS induced the MMT process of mesothelial cells via interacting with G3BP1 protein. Additionally, G3BP1 interfering peptide based on the F380/F382 residues was able to block SPOCD1-AS/G3BP1 interaction, inhibit the MMT phenotype of mesothelial cells, and diminish peritoneal metastasis in vivo. Conclusions Our findings elucidate the mechanism associated with EVs and their cargos in ovarian cancer peritoneal metastasis and may provide a potential approach for metastatic ovarian cancer therapeutics.


Sign in / Sign up

Export Citation Format

Share Document