scholarly journals Heterotopic ossification in mice overexpressing Bmp2 in Tie2+ lineages

2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Belén Prados ◽  
Raquel del Toro ◽  
Donal MacGrogan ◽  
Paula Gómez-Apiñániz ◽  
Tania Papoutsi ◽  
...  

AbstractBone morphogenetic protein (Bmp) signaling is critical for organismal development and homeostasis. To elucidate Bmp2 function in the vascular/hematopoietic lineages we generated a new transgenic mouse line in which ectopic Bmp2 expression is controlled by the Tie2 promoter. Tie2CRE/+;Bmp2tg/tg mice develop aortic valve dysfunction postnatally, accompanied by pre-calcific lesion formation in valve leaflets. Remarkably, Tie2CRE/+;Bmp2tg/tg mice develop extensive soft tissue bone formation typical of acquired forms of heterotopic ossification (HO) and genetic bone disorders, such as Fibrodysplasia Ossificans Progressiva (FOP). Ectopic ossification in Tie2CRE/+;Bmp2tg/tg transgenic animals is accompanied by increased bone marrow hematopoietic, fibroblast and osteoblast precursors and circulating pro-inflammatory cells. Transplanting wild-type bone marrow hematopoietic stem cells into lethally irradiated Tie2CRE/+;Bmp2tg/tg mice significantly delays HO onset but does not prevent it. Moreover, transplanting Bmp2-transgenic bone marrow into wild-type recipients does not result in HO, but hematopoietic progenitors contribute to inflammation and ectopic bone marrow colonization rather than to endochondral ossification. Conversely, aberrant Bmp2 signaling activity is associated with fibroblast accumulation, skeletal muscle fiber damage, and expansion of a Tie2+ fibro-adipogenic precursor cell population, suggesting that ectopic bone derives from a skeletal muscle resident osteoprogenitor cell origin. Thus, Tie2CRE/+;Bmp2tg/tg mice recapitulate HO pathophysiology, and might represent a useful model to investigate therapies seeking to mitigate disorders associated with aberrant extra-skeletal bone formation.

Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 611
Author(s):  
Serena Cappato ◽  
Riccardo Gamberale ◽  
Renata Bocciardi ◽  
Silvia Brunelli

Heterotopic ossification is defined as an aberrant formation of bone in extraskeletal soft tissue, for which both genetic and acquired conditions are known. This pathologic process may occur in many different sites such as the skin, subcutaneous tissue, skeletal muscle and fibrous tissue adjacent to joints, ligaments, walls of blood vessels, mesentery and other. The clinical spectrum of this disorder is wide: lesions may range from small foci of ossification to massive deposits of bone throughout the body, typical of the progressive genetically determined conditions such as fibrodysplasia ossificans progressiva, to mention one of the most severe and disabling forms. The ectopic bone formation may be regarded as a failed tissue repair process in response to a variety of triggers and evolving towards bone formation through a multistage differentiation program, with several steps common to different clinical presentations and distinctive features. In this review, we aim at providing a comprehensive view of the genetic and acquired heterotopic ossification disorders by detailing the clinical and molecular features underlying the different human conditions in comparison with the corresponding, currently available mouse models.


2002 ◽  
Vol 22 (17) ◽  
pp. 6222-6233 ◽  
Author(s):  
Valérie Geoffroy ◽  
Michaela Kneissel ◽  
Brigitte Fournier ◽  
Alan Boyde ◽  
Patrick Matthias

ABSTRACT The runt family transcription factor core-binding factor α1 (Cbfa1) is essential for bone formation during development. Surprisingly, transgenic mice overexpressing Cbfa1 under the control of the 2.3-kb collagen type I promoter developed severe osteopenia that increased progressively with age and presented multiple fractures. Analysis of skeletally mature transgenic mice showed that osteoblast maturation was affected and that specifically in cortical bone, bone resorption as well as bone formation was increased, inducing high bone turnover rates and a decreased degree of mineralization. To understand the origin of the increased bone resorption, we developed bone marrow stromal cell cultures and reciprocal coculture of primary osteoblasts and spleen cells from wild-type or transgenic mice. We showed that transgenic cells of the osteoblastic lineage induced an increased number of tartrate-resistant acid phosphatase-positive multinucleated cells, suggesting that primary osteoblasts as well as bone marrow stromal cells from transgenic mice have stronger osteoclastogenic properties than cells derived from wild-type animals. We investigated the candidate genes whose altered expression could trigger this increase in bone resorption, and we found that the expression of receptor activator of NF-κB ligand (RANKL) and collagenase 3, two factors involved in bone formation-resorption coupling, was markedly increased in transgenic cells. Our data thus suggest that overexpression of Cbfa1 in cells of the osteoblastic lineage does not necessarily induce a substantial increase in bone formation in the adult skeleton but has a positive effect on osteoclast differentiation in vitro and can also dramatically enhance bone resorption in vivo, possibly through increased RANKL expression.


2020 ◽  
Vol 117 (34) ◽  
pp. 20729-20740 ◽  
Author(s):  
Xingyu Wang ◽  
Adwait Amod Sathe ◽  
Gregory R. Smith ◽  
Frederique Ruf-Zamojski ◽  
Venugopalan Nair ◽  
...  

Tissue-resident macrophages can originate from embryonic or adult hematopoiesis. They play important roles in a wide range of biological processes including tissue remodeling during organogenesis, organ homeostasis, repair following injury, and immune response to pathogens. Although the origins and tissue-specific functions of resident macrophages have been extensively studied in many other tissues, they are not well characterized in skeletal muscle. In the present study, we have characterized the ontogeny of skeletal muscle-resident macrophages by lineage tracing and bone marrow transplant experiments. We demonstrate that skeletal muscle-resident macrophages originate from both embryonic hematopoietic progenitors located within the yolk sac and fetal liver as well as definitive hematopoietic stem cells located within the bone marrow of adult mice. Single-cell-based transcriptome analyses revealed that skeletal muscle-resident macrophages are distinctive from resident macrophages in other tissues as they express a distinct complement of transcription factors and are composed of functionally diverse subsets correlating to their origins. Functionally, skeletal muscle-resident macrophages appear to maintain tissue homeostasis and promote muscle growth and regeneration.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 32-32
Author(s):  
Lei Wang ◽  
Linda Yang ◽  
Marie–Dominique Filippi ◽  
David A. Williams ◽  
Yi Zheng

Abstract The Rho family GTPase Cdc42 has emerged as a key signal transducer in cell regulation. To investigate its physiologic function in hematopoiesis, we have generated mice carrying a gene targeted null allele of cdc42gap, a major negative regulatory gene of Cdc42 and mice with conditional targeted cdc42 allele (cdc42flox/flox). Deletion of the respective gene products in mice was confirmed by PCR genotyping and Western blotting. Low-density fetal liver or bone marrow cells from Cdc42GAP−/− mice displayed ~3 fold elevated Cdc42 activity and normal RhoA, Rac1 or Rac2 activity, indicating that cdc42gap deletion has a specific effect on Cdc42 activity. The Cdc42GAP-deficient hematopoietic stem/progenitor cells (HSC/Ps, Lin−c-Kit+) generated from Cdc42GAP−/− E14.5 fetal liver and the Cdc42−/− HSC/Ps derived by in vitro expression of Cre via a retrovirus vector from Cdc42flox/flox low density bone marrow showed a growth defect in liquid culture that was associated with increased apoptosis but normal cell cycle progression. Cdc42GAP-deficient HSC/Ps displayed impaired cortical F-actin assembly with extended actin protrusions upon exposure to SDF–1 in vitro and a punctuated actin structure after SCF stimulation while Cdc42−/− but not wild type HSC/Ps responded to SDF-1 in inducing membrane protrusions. Both Cdc42−/− and Cdc42GAP−/− HSC/Ps were markedly decreased in adhesion to fibronectin. Moreover, both Cdc42−/− and Cdc42GAP−/− HSC/Ps showed impaired migration in response to SDF-1. These results demonstrate that Cdc42 regulation is essential for multiple HSC/P functions. To understand the in vivo hematopoietic function of Cdc42, we have characterized the Cdc42GAP−/− mice further. The embryos and newborns of homozygous showed a ~30% reduction in hematopoietic organ (i.e. liver, bone marrow, thymus and spleen) cellularity, consistent with the reduced sizes of the animals. This was attributed to the increased spontaneous apoptosis associated with elevated Cdc42/JNK/Bid activities but not to a proliferative defect as revealed by in vivo TUNEL and BrdU incorporation assays. ~80% of Cdc42GAP−/− mice died one week after birth, and the surviving pups attained adulthood but were anemic. Whereas Cdc42GAP−/− mice contained small reduction in the frequency of HSC markers and normal CFU-G, CFU-M, and CFU-GM activities, the frequency of BFU-E and CFU-E were significantly reduced. These results suggest an important role of Cdc42 in erythropoiesis in vivo. Taken together, we propose that Cdc42 is essential for multiple HSC/P functions including survival, actin cytoskeleton regulation, adhesion and migration, and that deregulation of its activity can have a significant impact on erythropoiesis. Cdc42 regulates HSC/P functions and erythropoiesis Genotype/phenotype Apoptosis increase Adhesion decrease Migration decrease F-actin assembly HSC frequency decrease BFU-E, CFU-E decrease The numbers were indicated as fold difference compared with wild type. ND:not determined yet. Cdc42GAP−/− 2.43, p<0.005 0.97, p<0.01 1.01, p<0.01 protrusion (SDF-1); punctruated (SCF) 0.34, p<0.05 0.92, p<0.01; 0.38, p<0 Cdc42−/− 3.68, p<0.005 0.98, p<0.001 3.85, p<0.005 protrusion (SDF-1) ND ND


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 31-31
Author(s):  
Wen-Shu Wu ◽  
Dong Xu ◽  
Stefan Heinrichs ◽  
A. Thomas Look

Abstract An antiapoptotic role for Slug/Snail in mammals was suggested by studies in C. elegans, where CES-1/Scratch, a member of the Slug/Snail superfamily, was found to control the apoptotic death of NSM sister neurons by acting as a transcriptional repressor of EGL-1, a BH3-only proapoptotic protein. Identification of Slug as the target gene of the E2A-HLF oncoprotein in human pro-B leukemia cells led us to demonstrate its antiapoptotic function in IL-3-dependent murine pro-B cells. In contrast to its aberrant expression in pro-B leukemia cells, endogenous Slug is normally expressed in both LT-HSC and ST-HSC, as well as committed progenitors of the myeloid series, but not in pro-B and pro-T cells, implying its function in myelopoiesis. Using Slug−/− mice produced in our laboratory, we showed that these knockouts are much more radiosensitive than Slug+/− and wild-type mice, and that apoptotic cells increase significantly in the hematopoietic progenitor cells of Slug−/− mice as compared to wild-type mice following γ-irradiation, indicating a radioprotective function in vivo. We showed here that although the development of myeloid progenitors is not impaired under steady-state conditions, their repopulation is incomplete γ-irradiated in in Slug−/− mice. We demonstrate further the radiation-induced death of Slug−/− mice is exclusively a result of bone marrow failure with no apparent contribution from systemic injures to other tissues. By two-way bone marrow transplantation, we provide firm evidence that Slug protects mice from γ-irradiation-induced death in a cell-autonomous manner. Interestingly, regenerative capacity of hematopoietic stem cells (HSC) was retained in irradiated Slug−/− mice, which could be rescued by wild-type bone marrow cells after irradiation, indicating that Slug exerts its radioprotective function in myeloid progenitors rather than HSCs. Furthermore, we establish that Slug radioprotects mice by antagonizing downstream of the p53-mediated apoptotic signaling through inhibition of the p53-resposive proapoptotic gene Puma, leading in turn to inhibition of the mitochondria-dependent apoptotic pathway activated by γ-irradiation in myeloid progenitors. More interestingly, we observed that Slug is inducible by γ-irradiation in a p53-dependent manner. Together, our findings implicate a novel Slug-mediated feedback mechanism by which p53 control programmed cell death in myeloid progenitor cells in vivo in response to γ-irradiation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2266-2266
Author(s):  
David Weksberg ◽  
Carl G. Feng ◽  
Alan Sher ◽  
Margaret A. Goodell

Abstract Hematopoietic stem cells (HSCs) have a remarkable capacity to respond to proliferative stimuli, as they are able to reconstitute the blood following catastrophic injuries such as chemotherapy and lethal irradiation. Most work aimed at elucidating the genetic and molecular controls on this program of activation has focused on HSCs responding to these artificial stimuli, however there is a surprising paucity of information reflecting the response of HSCs to the types of stimuli encountered in a non-laboratory setting. Here we report that LRG-47, an interferon-inducible GTPase, is required for HSCs to respond to a variety of proliferative stimuli, including mycobaterial challenge. Previously studied solely in the context of the immune response to intracellular pathogens, LRG-47 is upregulated in HSCs during 5-fluorouracil-(5FU) induced proliferation, and we now show that LRG-47 −/− HSCs exhibit profound defects. LRG-47 −/− HSCs achieve only 4–8% of wild-type engraftment activity in competitive repopulation assays (Figure 1) and, strikingly, even transplantation in 25-fold excess over wild-type competitor fails to rescue this defect. We also demonstrate that LRG-47 −/− HSCs are impaired in colony-forming ability, and that LRG-47 −/− mice exhibit both a relative and absolute failure to expand the stem cell/progenitor compartments in response to 5FU (Figure 2). Intriguingly, we also show that infectious challenge with Mycobacterium avium stimulates an expansion of the progenitor cell (LSK) compartment in wild-type mice - and that LRG-47-deficient mice are unable to mount this response. These findings implicate LRG-47 as being required for effective proliferation of HSCs in response to various stimuli. Furthermore, these results imply that expansion at the progenitor cell level is a downstream effector mechanism of the cytokine-mediated immune response to infection. Ultimately, understanding the mechanisms by which HSCs sense and respond to proliferative stimuli has far-ranging applications, and our work establishes an important connection with the immune system as a regulator of this process. Infectious processes can now arguably join ex vivo HSC manipulation, mechanisms of hematologic malignancy, and transplantation medicine as areas of importance informed by an understanding of the controls on HSC activation, proliferation and quiescence. Figure 1. Competitive transplant of LRG-/- bone marrow. Whole bone marrow from wild type and LRG-47 -/- mice (CD45.2) admixed with a constant number of CD45.1 competitor cells (250,000) and transplanted into lethally irradiated recipients (CD45.1). Perecent chimerism was assessed every four weeks post-transplant (error bars = SEM). Figure 1. Competitive transplant of LRG-/- bone marrow. Whole bone marrow from wild type and LRG-47 -/- mice (CD45.2) admixed with a constant number of CD45.1 competitor cells (250,000) and transplanted into lethally irradiated recipients (CD45.1). Perecent chimerism was assessed every four weeks post-transplant (error bars = SEM). Figure 2. LRG-47 -/- fail to expand HSC compartment in response to SFU. Wild type and LRG-47 -/- mice were injected with SFU 6-days prior to side population (SP) analysis of HSC compartment. While wild-type mice showed the expected expansion of the HSC population (upper panels - gated), this response is impaired in the knockout mice (lower panels). Figure 2. LRG-47 -/- fail to expand HSC compartment in response to SFU. Wild type and LRG-47 -/- mice were injected with SFU 6-days prior to side population (SP) analysis of HSC compartment. While wild-type mice showed the expected expansion of the HSC population (upper panels - gated), this response is impaired in the knockout mice (lower panels).


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 645-645
Author(s):  
Ashish Kumar ◽  
Weili Chen ◽  
John H. Kersey

Abstract Our understanding of the biology of MLL fusion gene leukemias is limited by the lack of knowledge of the effects of the different MLL fusion genes on expression of specific homoebox genes and the specific cell compartment(s) that are subsequently deregulated. In this study we investigated whether cellular deregulation was present in committed myeloid precursors and/or the multi-potent hematopoietic stem cells derived from Mll-AF9 knock-in mice. We used the murine knock-in model since it offers the advantage of a single copy of the Mll fusion gene under the control of the endogenous promoter that is present in every hematopoietic stem/progenitor cell. The Mll-AF9 knock-in mice display expansion of the myeloid compartment as early as 6 weeks of age (young adult) and develop myeloid leukemia at approximately 6 months. We purified hematopoietic stem cells (HSCs) and granulocyte-monocyte progenitors (GMPs) from wild type and Mll-AF9 young adult bone marrow. We depleted lineage positive cells using a magnetic separation system and purified the respective populations using fluorescence activated cell sorting with specific panels of antibodies (HSC=Li−/Thy1.1lo/IL-7R−/C-kit+/Sca-1+; GMP=Lin−/IL-7R−/Sca-1+/C-kit+/CD34+/CD16/32hi). We cultured these cells in methylcellulose supplemented with GM-CSF, IL-3, SCF and IL-6, conditions that promote the growth of myeloid colonies. We assessed growth deregulation by increased colony numbers at the end of 7 days of culture and by the predominance of dense, compact colony morphology, the latter comprised of immature myeloid cells. Culture of HSCs from Mll-AF9 and wild type mice yielded an identical number of colonies (1102 and 1315 colonies per 104 cells respectively, average). In contrast, GMPs from Mll-AF9 mice yielded almost four times the number of colonies compared to wild type GMPs (3331 and 920 colonies per 104 cells respectively, average). Additionally, Mll-AF9 GMPs formed a higher number of dense, compact colonies compared to Mll-AF9 HSCs (1314 and 352 colonies per 104 cells respectively, average). Neither HSCs nor GMPs from wild type mice formed dense, compact colonies. These results indicate a greater deregulation of GMPs compared to HSCs in Mll-AF9 mice. MLL fusion gene leukemias are characterized by over-expression of specific homeobox genes, and we have previously shown that Mll-AF9 bone marrow cells display increased expression of 5′ Hox-a genes and of the Hox co-factor Meis1 compared to wild type counterparts. We hypothesized that these genes are over-expressed in Mll-AF9 GMPs compared to wild type GMPs. Real time quantitative RT-PCR showed that expression levels of Hoxa7, Hoxa9 and Meis1 were increased in Mll-AF9 GMPs compared to wild type (2.7 ± 0.8, 11.7 ± 7.8 and 19 ± 11.3 fold respectively, mean ± SEM). Overall, these data support the hypothesis that the Mll-AF9 gene is “instructive” at the molecular level at least in part via specific homeobox gene over-expression, resulting in deregulation and expansion of specific progenitor/stem cells such as the GMP population. This expanded GMP population then becomes a target for secondary mutations and later development of leukemia. Future studies focused on understanding the biology of this compartment in Mll-AF9 mice will help in our understanding of the pathogenesis of leukemia and aid in the development of newer, more effective therapies.


Sign in / Sign up

Export Citation Format

Share Document