scholarly journals Oridonin inhibits DNMT3A R882 mutation-driven clonal hematopoiesis and leukemia by inducing apoptosis and necroptosis

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Min Liao ◽  
Qiongye Dong ◽  
Ruiqing Chen ◽  
Liqian Xu ◽  
Yuxuan Jiang ◽  
...  

AbstractDNA (cytosine-5)-methyltransferase 3A (DNMT3A) mutations occur in ~20% of de novo acute myeloid leukemia (AML) patients, and >50% of these mutations in AML samples are heterozygous missense alterations within the methyltransferase domain at residue R882. DNMT3A R882 mutations in AML patients promote resistance to anthracycline chemotherapy and drive relapse. In this study, we performed high-throughput screening and identified that oridonin, an ent-kaurene diterpenoid extracted from the Chinese herb Rabdosia rubescens, inhibits DNMT3A R882 mutant leukemic cells at a low-micromolar concentration (IC50 = 2.1 µM) by activating both RIPK1-Caspase-8-Caspase-3-mediated apoptosis and RIPK1-RIPK3-MLKL-mediated necroptosis. The inhibitory effect of oridonin against DNMT3A R882 mutant leukemia cells can also be observed in vivo. Furthermore, oridonin inhibits clonal hematopoiesis of hematopoietic stem cells (HSCs) with Dnmt3a R878H mutation comparing to normal HSCs by inducing apoptosis and necroptosis. Overall, oridonin is a potential and promising drug candidate or lead compound targeting DNMT3A R882 mutation-driven clonal hematopoiesis and leukemia.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1383-1383
Author(s):  
Kezhi Huang ◽  
Min Yang ◽  
Zengkai Pan ◽  
Florian H. Heidel ◽  
Michaela Scherr ◽  
...  

Abstract Using high-throughput sequencing, an increased number of gene mutations has been identified in cancer. Among the up to hundreds of acquired mutations in cancer clones, only a few cooperating mutations are believed to be needed for initiation of the malignant disease. Recently, we reported a single amino acid substitution at position 676 (N676K) within the FLT3 kinase domain as the sole cause of resistance to PKC412 in one patient with FLT3-ITD associated acute myeloid leukemia (AML). The FLT3-N676K mutation was more recently identified independently in up to 6% of de novo AML patients with inv(16) by other groups. As FLT3-TKD mutations are strongly associated with inv(16) in AML and particularly FLT3-N676K was found almost exclusively in AML patients with inv(16), this prompted us to investigate the transforming activity of FLT3-N676K and to test whether FLT3-N676K would cooperate with inv(16) to promote AML. First, we analyzed in vivo leukemogenesis mediated by FLT3-N676K. Retroviral expression of FLT3-N676K in myeloid 32D cells induced AML in syngeneic C3H/HeJ mice (n=11/13, latency ~8 weeks), with a transforming activity similar to FLT3-ITD (n=8/8), FLT3-TKD D835Y (n=8/9), and FLT3-ITD-N676K (n=9/9) mutations. Three out of 14 C57BL/6J mice transplanted with FLT3-N676K-transduced primary lineage negative (Lin-) bone marrow cells died of acute leukemia (latency of 68, 77, and 273 days), while none of 16 animals in the control groups including FLT3-ITD and CBFß-SMMHC developed any hematological malignancy. Secondly, co-expression of FLT3-N676K and CBFß-SMMHC did not promote acute leukemia in 3 independent experiments using C3H/HeJ and C57BL/6J mice (n=16). So far only 1 out of 11 C57BL/6J mice co-expressing FLT3-N676K and CBFß-SMMHC developed acute leukemia (AML with latency of 166 days). In comparison with FLT3-ITD, FLT3-N676K tended to result in stronger phosphorylation of FLT3, MAPK and AKT, and diseased animals carrying FLT3-N676K demonstrated much lower frequency of leukemic stem cells in the majority of analyzed cases. Importantly, leukemic cells co-expressing FLT3-N676K and CBFß-SMMHC were still highly sensitive to the FLT3 inhibitor AC220. Taken together, we show that FLT3-N676K mutant is potent to transform murine hematopoietic stem/progenitor cells in vivo independently of the inv(16) chimeric gene CBFB-MYH11. This is the first report of acute leukemia induced by an activating FLT3 mutation in C57BL/6J mice. Moreover, our data suggest that targeting FLT3-N676K mutation may be an attractive treatment option for FLT3-N676K-positive patients without concurrent ITD. Our data emphasize more careful analysis of the cooperating network of mutations identified in AML by high-throughput sequencing. This work was supported by DJCLS (grant: 13/22) and the Deutsche Forschungsgemeinschaft (grant: Li 1608/2-1). KH and ZP were supported by the China Scholarship Council (2011638024 and 201406100008). Disclosures Heidel: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 783-783
Author(s):  
Yuqing Sun ◽  
Hongzhi Miao ◽  
Zhenhua Zou ◽  
Bo Zhou ◽  
Kai Ge ◽  
...  

Abstract HOXA9 is a homeodomain-containing transcription factor that regulates hematopoietic stem cell renewal and differentiation and is commonly over expressed in acute leukemia, including acute myeloid leukemia (AML), and T- and B-precursor acute lymphoblastic leukemia (B-ALL and T-ALL). Together with its co-binding factor MEIS1, HOXA9 has been shown to play a causal role in leukemic transformation; however, the mechanism through which HOXA9 promotes leukemogenesis is poorly understood. Previously, we showed that HOXA9 primarily binds to promoter-distal regions of the genome that show histone H3 lysine 4 (H3K4) monomethylation and histone H3 and H4 acetylation, epigenetic signatures indicative of active enhancers. HOXA9 cobinds with other lineage specific transcription factors such as C/EBPα, which we previously showed to be essential for leukemic transformation. This suggests that HOXA9 functions in a multi-subunit complex including lineage-specific transcription factors as well as chromatin modulators, but the role of HOXA9 in promoting the formation of these "enhanceosomes" and how HOXA9 alters the enhancer landscape remains unknown. In these studies, we found that in both myeloid and lymphoid murine leukemia models, HOXA9 alters the enhancer landscape through creation of de novo enhancers, many of which are active in other cell lineages in early embryogenesis. RNA expression analysis revealed that these de novo enhancers drive a leukemia-specific transcription program, whose up regulation is significantly impaired upon either HOXA9 inactivation or CRISPR-mediated deletion of specific HOXA9-bound enhancer sequences. Protein and chromatin immunoprecipitation studies showed that HOXA9 physically interacts with the MLL3/MLL4 histone methyltransferase complex and colocalizes with MLL3/MLL4 at many sites in vivo . HOXA9 is required for the recruitment of C/EBPα, the MLL3/MLL4 complex and histone H3 lysine 4 monomethylation at de novo enhancers. This activity of HOXA9 is essential for the activation of genes regulated by de novo enhancers and is associated with increased interaction of these enhancers with promoters as assessed by chromosome conformation capture (4C). In contrast, HOXA9 is dispensable for both C/EBPα and MLL3/MLL4 binding and H3K4 monomethylation at enhancers active in normal hematopoietic cells. Genetic disruption of components of the MLL3/MLL4 complex abrogates the active epigenetic profile of de novo enhancer regions, and significantly delays leukemia progression driven by HOXA9/MEIS1 in vivo . Together these findings show that HOXA9 reprograms the enhancer landscape of hematopoietic progenitors in leukemic cells, including formation of many de novo enhancers active during early embryonic development. This mechanism involves HOXA9-dependent recruitment of MLL3/MLL4 methyltransferase complexes, suggesting that targeting this methyltransferase complex could be an effective strategy for malignancies associated with HOX deregulation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2851-2858 ◽  
Author(s):  
Yukari Okamoto ◽  
Daniel C. Douek ◽  
Richard D. McFarland ◽  
Richard A. Koup

Abstract Immune reconstitution is a critical component of recovery after treatment of human immunodeficiency virus (HIV) infection, cancer chemotherapy, and hematopoietic stem cell transplantation. The ability to enhance T-cell production would benefit such treatment. We examined the effects of exogenous interleukin-7 (IL-7) on apoptosis, proliferation, and the generation of T-cell receptor rearrangement excision circles (TRECs) in human thymus. Quantitative polymerase chain reaction demonstrated that the highest level of TRECs (14 692 copies/10 000 cells) was present in the CD1a+CD3−CD4+CD8+stage in native thymus, suggesting that TREC generation occurred following the cellular division in this subpopulation. In a thymic organ culture system, exogenous IL-7 increased the TREC frequency in fetal as well as infant thymus, indicating increased T-cell receptor (TCR) rearrangement. Although this increase could be due to the effect of IL-7 to increase thymocyte proliferation and decrease apoptosis of immature CD3− cells, the in vivo experiments using NOD/LtSz-scid mice given transplants of human fetal thymus and liver suggested that IL-7 can also directly enhance TREC generation. Our results provide compelling evidence that IL-7 has a direct effect on increasing TCR-αβ rearrangement and indicate the potential use of IL-7 for enhancing de novo naı̈ve T-cell generation in immunocompromised patients.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


Author(s):  
Florence Borot ◽  
Hui Wang ◽  
Yan Ma ◽  
Toghrul Jafarov ◽  
Azra Raza ◽  
...  

Antigen-directed immunotherapies for acute myeloid leukemia (AML), such as chimeric antigen receptor T cells (CAR-Ts) or antibody-drug conjugates (ADCs), are associated with severe toxicities due to the lack of unique targetable antigens that can distinguish leukemic cells from normal myeloid cells or myeloid progenitors. Here, we present an approach to treat AML by targeting the lineage-specific myeloid antigen CD33. Our approach combines CD33-targeted CAR-T cells, or the ADC Gemtuzumab Ozogamicin with the transplantation of hematopoietic stem cells that have been engineered to ablate CD33 expression using genomic engineering methods. We show highly efficient genetic ablation of CD33 antigen using CRISPR/Cas9 technology in human stem/progenitor cells (HSPC) and provide evidence that the deletion of CD33 in HSPC doesn’t impair their ability to engraft and to repopulate a functional multilineage hematopoietic system in vivo. Whole-genome sequencing and RNA sequencing analysis revealed no detectable off-target mutagenesis and no loss of functional p53 pathways. Using a human AML cell line (HL-60), we modeled a postremission marrow with minimal residual disease and showed that the transplantation of CD33-ablated HSPCs with CD33-targeted immunotherapy leads to leukemia clearance, without myelosuppression, as demonstrated by the engraftment and recovery of multilineage descendants of CD33-ablated HSPCs. Our study thus contributes to the advancement of targeted immunotherapy and could be replicated in other malignancies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 435-435
Author(s):  
Stephanie Nguyen ◽  
Nathalie Dhedin ◽  
Jean-Paul Vernant ◽  
Mathieu Kuentz ◽  
Sophie Hilpert ◽  
...  

Abstract The Perugia group reported favourable outcome in patients under haploidentical hematopoietic stem cell transplantation (SCT) for acute myeloid leukemia (AML) when donor and recipient were KIR ligand mismatched. In our study, we observed contradictory results in 11 adults (median age 25 years, range 15–38) who received a full haplotype mismatch SCT from a related donor at the Pitie-Salpetriere Hospital between October 1998 and December 2003 for high risk AML according to modalities of conditioning described by the Perugia group. Despite a KIR ligand mismatch in the GvH direction for 10 pairs of 11, majority of patients died (10/11) due to relapse for 7/11 and TRM for 3/11. Only 1 patient is alive in remission 8 months post SCT. No GvHD arose since the graft was positively selected for CD34+ cells using Clinimacs, resulting in an extensive T depletion. These observations incited us to perform in vitro studies to analyze NK cells reconstitution during the early period post haplo-SCT, as all the relapses occurred during the first 4 months following SCT. Peripheral blood was collected from 7 patients each month after SCT, and compared with the donors. T cells recovered very lately, in contrast to NK cells, which reached a normal absolute count rapidly. Similar phenotypic NK profile was observed in all patients. The CD56bright immunoregulatory NK cells subset was increased, representing a median of 55% of circulating NK cells at one month (M1), and 25 % at 3 months (M3) post SCT, as compared to 4% in the donors. Expression of the activating receptor NKp30 was reduced. The ratio of recipient/donor NKp30 on NK cells was 0.6 at M1 and 0.7 at M3. All inhibitory KIRs, especially, KIR2DL1 were down- regulated after SCT with a ratio, for KIR2DL1, at 0.23 at M1 and 0.37 at M3. To counterbalance the low expression of KIRs, the inhibitory receptor CD94/NKG2A was strikingly over expressed by NK cells generated after SCT (median of circulating NK cells expressing NKG2A: 97% at M1 and 90% at M3 versus 43% in the donors). This unusual phenotype persisted during all the study and evocated an immature state of NK cells. Immaturity of NK cells in vitro was associated with impaired functions. NK cells generated after SCT had a less efficient lysis of K562 cell line, and no cytotoxicity against the primary mismatched AML blasts, as compared to the donors. Expression of NKG2A by most NK cells post SCT was correlated with this impaired lysis. The ligand for NKG2A is HLA-E, which was also expressed by AML blasts as indicated by Western Blot analyzes. NK cells generated after SCT were cytotoxic against the HLA class I negative LCL 721-221cell line. Cytotoxicity was reduced against the LCL derivated 721-221 AEH cell line, transfected by HLA-E, and the lysis was restored after inhibition of NKG2A. Similar results were obtained with primary AML blasts; NK cytotoxicity against AML blasts was restored after blockade of NKG2A. We conclude that NK cells generated after haploidentical SCT exhibited an immature phenotype that persisted several months after SCT. This immaturity was correlated in vitro with an impaired cytotoxicity due to a dominant inhibitory role of NKG2A, and in vivo with the absence of GvL effect despite the mismatch KIR ligand in the GvH direction.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 95-95 ◽  
Author(s):  
Keisuke Ito ◽  
Paolo Sportoletti ◽  
John G Clohessy ◽  
Grisendi Silvia ◽  
Pier Paolo Pandolfi

Abstract Abstract 95 Myelodysplastic syndrome (MDS) is an incurable stem cell disorder characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Nucleophosmin (NPM) is directly implicated in primitive hematopoiesis, the pathogenesis of hematopoietic malignancies and more recently of MDS. However, little is known regarding the molecular role and function of NPM in MDS pathogenesis and in stem cell biology. Here we present data demonstrating that NPM plays a critical role in the maintenance of hematopoietic stem cells (HSCs) and the transformation of MDS into leukemia. NPM is located on chromosome 5q and is frequently lost in therapy-related and de novo MDS. We have previously shown that Npm1 acts as a haploinsufficient tumor suppressor in the hematopoietic compartment and Npm1+/− mice develop a hematologic syndrome with features of human MDS, including increased susceptibility to leukemogenesis. As HSCs have been demonstrated to be the target of the primary neoplastic event in MDS, a functional analysis of the HSC compartment is essential to understand the molecular mechanisms in MDS pathogenesis. However, the role of NPM in adult hematopoiesis remains largely unknown as Npm1-deficiency leads to embryonic lethality. To investigate NPM function in adult hematopoiesis, we have generated conditional knockout mice of Npm1, using the Cre-loxP system. Analysis of Npm1 conditional mutants crossed with Mx1-Cre transgenic mice reveals that Npm1 plays a crucial role in adult hematopoiesis and ablation of Npm1 in adult HSCs leads to aberrant cycling and followed by apoptosis. Analysis of cell cycle status revealed that HSCs are impaired in their ability to maintain quiescence after Npm1-deletion and are rapidly depleted in vivo as well as in vitro. Competitive reconstitution assay revealed that Npm1 acts cell-autonomously to maintain HSCs. Conditional inactivation of Npm1 leads to an MDS phenotype including a profoundly impaired ability to differentiate into cells of the erythroid lineage, megakaryocyte dyspoiesis and centrosome amplification. Furthermore, Npm1 loss evokes a p53-dependent response and Npm1-deleted HSCs undergo apoptosis in vivo and in vitro. Strikingly, transfer of the Npm1 mutation into a p53-null background rescued the apoptosis of Npm1-ablated HSCs and resulted in accelerated transformation to an aggressive and lethal form of acute myeloid leukemia. Our findings highlight the crucial role of NPM in stem cell biology and identify a new mechanism by which MDS can progress to leukemia. This has important therapeutic implications for de novo MDS as well as therapy-related MDS, which is known to rapidly evolve to leukemia with frequent loss or mutation of TRP53. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 779-779
Author(s):  
Maegan L. Capitano ◽  
Nirit Mor-Vaknin ◽  
Maureen Legendre ◽  
Scott Cooper ◽  
David Markovitz ◽  
...  

Abstract DEK is a nuclear DNA-binding protein that has been implicated in the regulation of transcription, chromatin remodeling, and mRNA processing. Endogenous DEK regulates hematopoiesis, as BM from DEK-/- mice manifest increased hematopoietic progenitor cell (HPC) numbers and cycling status and decreased long-term and secondary hematopoietic stem cell (HSC) engrafting capability (Broxmeyer et al., 2012, Stem Cells Dev., 21: 1449; 2013, Stem Cells, 31: 1447). Moreover, recombinant mouse (rm) DEK inhibits HPC colony formation in vitro. We now show that rmDEK is myelosuppressive in vitro in an S-phase specific manner and reversibly decreases numbers (~2 fold) and cycling status of CFU-GM, BFU-E, and CFU-GEMM in vivo, with DEK-/- mice being more sensitive than control mice to this suppression. In contrast, in vivo administration of rmDEK to wild type and DEK-/- mice enhanced numbers of phenotypic LT-HSC. This suggests that DEK may enhance HSC numbers by blocking production of HPCs. We thus assessed effects of DEK on ex vivo expansion of human CD34+ cord blood (CB) and mouse Lin- BM cells stimulated with SCF, Flt3 ligand, and TPO. DEK significantly enhanced ex vivo expansion of rigorously-defined HSC by ~3 fold both on day 4 (~15 fold increase from day 0) and 7 (~29 fold increase from day 0) when compared to cells expanded without DEK. Expanding HSC with DEK also resulted in a decrease in the percentage of apoptotic HSC. Further studies were done to better define how DEK works on HSC and HPC. As extracellular DEK can bind to heparan sulfate proteoglycans (HSPG), become internalized, and then remodel chromatin in non-hematopoietic cells in vitro (Kappes et al., 2011, Genes Dev., 673; Saha et al., 2013, PNAS, 110: 6847), we assessed effects of DEK on the heterochromatin marker H3K9He3 in the nucleus of purified mouse lineage negative, Sca-1 positive, c-Kit positive (LSK) BM cells by imaging flow cytometry. DEK enhanced the presence of H3K9Me3 in the nucleus of DEK-/- LSK cells, indicating that rmDEK can be internalized by LSK cells and mediate heterochromatin formation. We also investigated whether inhibiting DEK's ability to bind to HSPG would block the inhibitory function of DEK in HPC. Blocking the synthesis of, the surface expression of, and the binding capability of HSPG blocked the inhibitory effect of DEK on colony formation. Blocking the ability of DEK to bind to HSPG also blocks the expansion of HSC in ex vivo expansion assays, suggesting that DEK mediates its function in both HSC and HPC by binding to HSPG but with opposing effects. To further evaluate the biological role of rmDEK, we utilized single-stranded anti-DEK aptamers that inactivate its function. These aptamers, but not their control, neutralized the inhibitory effect of rmDEK on HPC colony formation. Moreover, treating BM cells in vitro with truncated rmDEK created by incubating DEK with the enzyme DPP4 (DEK has targeted truncation sites for DPP4) eliminated the inhibitory effects of DEK, suggesting that DEK must be in its full- length form in order to perform its function. Upon finding that DEK has a Glu-Leu-Arg (ELR) motif, similar to that of CXC chemokines such as IL-8, and as DEK is a chemoattractant for mature white blood cells, we hypothesized that DEK may manifest at least some of its actions through CXCR2, the receptor known to bind and mediate the actions of IL-8 and MIP-2. In order to examine if this is indeed the case, we first confirmed expression of CXCR2 on the surface of HSC and HPC and then determined if neutralizing CXCR2 could block DEK's inhibitory function in HPC. BM treated in vitro with rmDEK, rhIL-8, or rmMIP-2 inhibited colony formation; pretreating BM with neutralizing CXCR2 antibodies blocked the inhibitory effect of these proteins. DEK inhibition of CFU-GM colony formation is dependent on Gai-protein-coupled receptor signaling as determined through the use of pertussis toxin, which is a mechanism unique to DEK, as we have previously reported that IL-8 and MIP-1a are insensitive to the inhibitory effects of pertussis toxin. Blocking the ability of DEK to bind to CXCR2 also inhibited the expansion of HSC in an ex vivo expansion assay. This suggests that DEK binds to CXCR2, HSPG or both to mediate its function on HPC and HSC, enhancing HSC but decreasing HPC numbers. Therefore, DEK may be a crucial regulatory determinant of HSC/HPC function and fate decision that is utilized to enhance ex vivo expansion of HSC. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 211 (6) ◽  
pp. 1093-1108 ◽  
Author(s):  
Andrew Volk ◽  
Jing Li ◽  
Junping Xin ◽  
Dewen You ◽  
Jun Zhang ◽  
...  

Leukemic stem cells (LSCs) isolated from acute myeloid leukemia (AML) patients are more sensitive to nuclear factor κB (NF-κB) inhibition-induced cell death when compared with hematopoietic stem and progenitor cells (HSPCs) in in vitro culture. However, inadequate anti-leukemic activity of NF-κB inhibition in vivo suggests the presence of additional survival/proliferative signals that can compensate for NF-κB inhibition. AML subtypes M3, M4, and M5 cells produce endogenous tumor necrosis factor α (TNF). Although stimulating HSPC with TNF promotes necroptosis and apoptosis, similar treatment with AML cells (leukemic cells, LCs) results in an increase in survival and proliferation. We determined that TNF stimulation drives the JNK–AP1 pathway in a manner parallel to NF-κB, leading to the up-regulation of anti-apoptotic genes in LC. We found that we can significantly sensitize LC to NF-κB inhibitor treatment by blocking the TNF–JNK–AP1 signaling pathway. Our data suggest that co-inhibition of both TNF–JNK–AP1 and NF-κB signals may provide a more comprehensive treatment paradigm for AML patients with TNF-expressing LC.


1977 ◽  
Vol 73 (3) ◽  
pp. 578-593 ◽  
Author(s):  
C Patzelt ◽  
D Brown ◽  
B Jeanrenaud

Colchicine inhibited amylase secretion by isolated rat parotid glands only 6 h after administration of the drug in vivo. This delayed effect was not the result of the inability of the drug to reach its reaction site. When parotid glands were emptied of their secretory granules by isoproterenol treatment, the subsequent replenishment of cells with granules was inhibited by colchicines. Colchicine concomitantly produced alterations of the Golgi complexes, the cisternae of which were reduced in size and surrounded by clusters of microvesicles. Incubation of parotid glands with colchicines for prolonged durations failed to alter stored amylase secretion as stimulated by isoproterenol, but it inhibited the release of de novo synthesized enzyme. Another colchicines-binding activity, firmly bound to the particular fraction of homogenates, was found, of which a part may represent membrane located microtubular protein. An assembly-disassembly cycle of microtubules appears to exist in the parotid gland, as in the liver. However, only 14 percent of tubulin was found to be polymerized as microtubules in parotid glands as opposed to 40 percent in the liver. The present data suggest that colchicine primarily inhibits the transfer of secretory material towards or away from the Golgi complexes but not the hormone-stimulated secretion of stored amylase.


Sign in / Sign up

Export Citation Format

Share Document