scholarly journals Manganese salts function as potent adjuvants

Author(s):  
Rui Zhang ◽  
Chenguang Wang ◽  
Yukun Guan ◽  
Xiaoming Wei ◽  
Mengyin Sha ◽  
...  

AbstractAluminum-containing adjuvants have been used for nearly 100 years to enhance immune responses in billions of doses of vaccines. To date, only a few adjuvants have been approved for use in humans, among which aluminum-containing adjuvants are the only ones widely used. However, the medical need for potent and safe adjuvants is currently continuously increasing, especially those triggering cellular immune responses for cytotoxic T lymphocyte activation, which are urgently needed for the development of efficient virus and cancer vaccines. Manganese is an essential micronutrient required for diverse biological activities, but its functions in immunity remain undefined. We previously reported that Mn2+ is important in the host defense against cytosolic dsDNA by facilitating cGAS-STING activation and that Mn2+ alone directly activates cGAS independent of dsDNA, leading to an unconventional catalytic synthesis of 2′3′-cGAMP. Herein, we found that Mn2+ strongly promoted immune responses by facilitating antigen uptake, presentation, and germinal center formation via both cGAS-STING and NLRP3 activation. Accordingly, a colloidal manganese salt (Mn jelly, MnJ) was formulated to act not only as an immune potentiator but also as a delivery system to stimulate humoral and cellular immune responses, inducing antibody production and CD4+/CD8+ T-cell proliferation and activation by either intramuscular or intranasal immunization. When administered intranasally, MnJ also worked as a mucosal adjuvant, inducing high levels of secretory IgA. MnJ showed good adjuvant effects for all tested antigens, including T cell-dependent and T cell-independent antigens, such as bacterial capsular polysaccharides, thus indicating that it is a promising adjuvant candidate.

Blood ◽  
2004 ◽  
Vol 103 (8) ◽  
pp. 3084-3092 ◽  
Author(s):  
Siske S. Struik ◽  
Fakhreldin M. Omer ◽  
Katerina Artavanis-Tsakonas ◽  
Eleanor M. Riley

Abstract Whole-blood assays (WBAs) have been successfully used as a simple tool for immuno-epidemiological field studies evaluating cellular immune responses to mycobacterial and viral antigens. Rather unexpectedly, we found very poor cytokine responses to malaria antigens in WBAs in 2 immuno-epidemiological studies carried out in malaria endemic populations in Africa. We have therefore conducted a detailed comparison of cellular immune responses to live (intact) and lysed malaria-infected erythrocytes in WBAs and in peripheral blood mononuclear cell (PBMC) cultures. We observed profound inhibition of both proliferative and interferon-γ responses to malarial antigens in WBAs as compared with PBMC cultures. This inhibition was seen only for malaria antigens and could not be overcome by increasing either antigen concentration or responder cell numbers. Inhibition was mediated by intact erythrocytes and occurred early in the culture period, suggesting that failure of antigen uptake might underlie the lack of T-cell responses. In support of this hypothesis, we have shown that intact uninfected erythrocytes specifically inhibit phagocytosis of infected red blood cells by peripheral blood monocytes. We propose that specific biochemical interactions with uninfected erythrocytes inhibit the phagocytosis of malaria-infected erythrocytes and that this may impede T-cell recognition in vivo. (Blood. 2004; 103:3084-3092)


2003 ◽  
Vol 77 (18) ◽  
pp. 9823-9830 ◽  
Author(s):  
Sang-Moo Kang ◽  
Qizhi Yao ◽  
Lizheng Guo ◽  
Richard W. Compans

ABSTRACT To enhance the efficiency of antigen uptake at mucosal surfaces, CTB was conjugated to simian immunodeficiency virus (SIV) virus-like particles (VLPs). We characterized the immune responses to the Env and Gag proteins after intranasal administration. Intranasal immunization with a mixture of VLPs and CTB as an adjuvant elicited higher levels of SIV gp160-specific immunoglobulin G (IgG) in sera and IgA in mucosae, including saliva, vaginal-wash samples, lung, and intestine, as well as a higher level of neutralization activities than immunization with VLPs alone. Conjugation of CTB to VLPs also enhanced the SIV VLP-specific antibodies in sera and in mucosae to similar levels. Interestingly, CTB-conjugated VLPs showed higher levels of cytokine (gamma interferon)-producing splenocytes and cytotoxic-T-lymphocyte activities of immune cells than VLPs plus CTB, as well as an increased level of both IgG1 and IgG2a serum antibodies, which indicates enhancement of both Th1- and Th2-type cellular immune responses. These results demonstrate that CTB can be an effective mucosal adjuvant in the context of VLPs to induce enhanced humoral, as well as cellular, immune responses.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 807-814 ◽  
Author(s):  
James W. Lillard ◽  
Udai P. Singh ◽  
Prosper N. Boyaka ◽  
Shailesh Singh ◽  
Dennis D. Taub ◽  
...  

AbstractMacrophage inflammatory protein-1α (MIP-1α) and MIP-1β are distinct but highly homologous CC chemokines produced by a variety of host cells in response to various external stimuli and share affinity for CCR5. To better elucidate the role of these CC chemokines in adaptive immunity, we have characterized the affects of MIP-1α and MIP-1β on cellular and humoral immune responses. MIP-1α stimulated strong antigen (Ag)–specific serum immunoglobulin G (IgG) and IgM responses, while MIP-1β promoted lower IgG and IgM but higher serum IgA and IgE antibody (Ab) responses. MIP-1α elevated Ag-specific IgG1 and IgG2b followed by IgG2a and IgG3 subclass responses, while MIP-1β only stimulated IgG1 and IgG2b subclasses. Correspondingly, MIP-1β produced higher titers of Ag-specific mucosal secretory IgA Ab levels when compared with MIP-1α. Splenic T cells from MIP-1α– or MIP-1β–treated mice displayed higher Ag-specific Th1 (interferon-γ [IFN-γ]) as well as selective Th2 (interleukin-5 [IL-5] and IL-6) cytokine responses than did T cells from control groups. Interestingly, mucosally derived T cells from MIP-1β–treated mice displayed higher levels of IL-4 and IL-6 compared with MIP-1α–treated mice. However, MIP-1α effectively enhanced Ag-specific cell-mediated immune responses. In correlation with their selective effects on humoral and cellular immune responses, these chemokines also differentially attract CD4+ versus CD8+ T cells and modulate CD40, CD80, and CD86 expressed by B220+ cells as well as CD28, 4-1BB, and gp39 expression by CD4+ and CD8+ T cells in a dose-dependent fashion. Taken together, these studies suggest that these CC chemokines differentially enhance mucosal and serum humoral as well as cellular immune responses.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 126
Author(s):  
Lilin Lai ◽  
Nadine Rouphael ◽  
Yongxian Xu ◽  
Amy C. Sherman ◽  
Srilatha Edupuganti ◽  
...  

The cellular immune responses elicited by an investigational vaccine against an emergent variant of influenza (H3N2v) are not fully understood. Twenty-five subjects, enrolled in an investigational influenza A/H3N2v vaccine study, who received two doses of vaccine 21 days apart, were included in a sub-study of cellular immune responses. H3N2v-specific plasmablasts were determined by ELISpot 8 days after each vaccine dose and H3N2v specific CD4+ T cells were quantified by intracellular cytokine and CD154 (CD40 ligand) staining before vaccination, 8 and 21 days after each vaccine dose. Results: 95% (19/20) and 96% (24/25) subjects had pre-existing H3N2v specific memory B, and T cell responses, respectively. Plasmablast responses at Day 8 after the first vaccine administration were detected against contemporary H3N2 strains and correlated with hemagglutination inhibition HAI (IgG: p = 0.018; IgA: p < 0.001) and Neut (IgG: p = 0.038; IgA: p = 0.021) titers and with memory B cell frequency at baseline (IgA: r = 0.76, p < 0.001; IgG: r = 0.74, p = 0.0001). The CD4+ T cells at Days 8 and 21 expanded after prime vaccination and this expansion correlated strongly with early post-vaccination HAI and Neut titers (p ≤ 0.002). In an adult population, the rapid serological response observed after initial H3N2v vaccination correlates with post-vaccination plasmablasts and CD4+ T cell responses.


Blood ◽  
2013 ◽  
Vol 121 (21) ◽  
pp. 4330-4339 ◽  
Author(s):  
Thushan I. de Silva ◽  
Yanchun Peng ◽  
Aleksandra Leligdowicz ◽  
Irfan Zaidi ◽  
Lucy Li ◽  
...  

Key PointsHIV-2 viral control is associated with a polyfunctional Gag-specific CD8+ T-cell response but not with perforin upregulation. Our findings provide insight into cellular immune responses associated with a naturally contained human retroviral infection.


2000 ◽  
Vol 97 (9) ◽  
pp. 4760-4765 ◽  
Author(s):  
E. Jager ◽  
Y. Nagata ◽  
S. Gnjatic ◽  
H. Wada ◽  
E. Stockert ◽  
...  

Cell Reports ◽  
2021 ◽  
Vol 36 (11) ◽  
pp. 109708
Author(s):  
Hang Zhang ◽  
Shasha Deng ◽  
Liting Ren ◽  
Peiyi Zheng ◽  
Xiaowen Hu ◽  
...  

Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 26 ◽  
Author(s):  
Georgia Kalodimou ◽  
Svenja Veit ◽  
Sylvia Jany ◽  
Ulrich Kalinke ◽  
Christopher C. Broder ◽  
...  

Nipah virus (NiV) is an emerging zoonotic virus that is transmitted by bats to humans and to pigs, causing severe respiratory disease and often fatal encephalitis. Antibodies directed against the NiV-glycoprotein (G) protein are known to play a major role in clearing NiV infection and in providing vaccine-induced protective immunity. More recently, T cells have been also shown to be involved in recovery from NiV infection. So far, relatively little is known about the role of T cell responses and the antigenic targets of NiV-G that are recognized by CD8 T cells. In this study, NiV-G protein served as the target immunogen to activate NiV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for the generation of MVA–NiV-G candidate vaccines expressing different versions of recombinant NiV-G. Overlapping peptides covering the entire NiV-G protein were used to identify major histocompatibility complex class I/II-restricted T cell responses in type I interferon receptor-deficient (IFNAR−/−) mice after vaccination with the MVA–NiV-G candidate vaccines. We have identified an H2-b-restricted nonamer peptide epitope with CD8 T cell antigenicity and a H2-b 15mer with CD4 T cell antigenicity in the NiV-G protein. The identification of this epitope and the availability of the MVA–NiV-G candidate vaccines will help to evaluate NiV-G-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of NiV-G infection. Of note, a soluble version of NiV-G was advantageous in activating NiV-G-specific cellular immune responses using these peptides.


2020 ◽  
Vol 222 (7) ◽  
pp. 1235-1244 ◽  
Author(s):  
Jackson S Turner ◽  
Tingting Lei ◽  
Aaron J Schmitz ◽  
Aaron Day ◽  
José Alberto Choreño-Parra ◽  
...  

Abstract Background Cellular immune responses are not well characterized during the initial days of acute symptomatic influenza infection. Methods We developed a prospective cohort of human subjects with confirmed influenza illness of varying severity who presented within a week after symptom onset. We characterized lymphocyte and monocyte populations as well as antigen-specific CD8+ T-cell and B-cell responses from peripheral blood mononuclear cells using flow cytometry and enzyme-linked immunospot assays. Results We recruited 68 influenza-infected individuals on average 3.5 days after the onset of symptoms. Three patients required mechanical ventilation. Influenza-specific CD8+ T-cell responses expanded before the appearance of plasmablast B cells. However, the influenza-specific CD8+ T-cell response was lower in infected subjects than responses seen in uninfected control subjects. Circulating populations of inflammatory monocytes were increased in most subjects compared with healthy controls. Inflammatory monocytes were significantly reduced in the 3 subjects requiring mechanical ventilation. Inflammatory monocytes were also reduced in a separate validation cohort of mechanically ventilated patients. Conclusions Antigen-specific CD8+ T cells respond early during acute influenza infection at magnitudes that are lower than responses seen in uninfected individuals. Circulating inflammatory monocytes increase during acute illness and low absolute numbers are associated with very severe disease.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1409-1409 ◽  
Author(s):  
Cristina M. Bertinetti ◽  
Hendrik Veelken

Abstract Induction of tumor-specific immune responses by idiotype vaccination is a promising strategy for biological therapy of indolent B cell lymphomas. In a previous report, we have described immune responses in a subset of patients participating in a phase I clinical trial primarily designed to demonstrate safety and efficacy of a recombinant idiotype vaccine (Veelken et al., ASH abstract #3342, 2003). In this trial, B-NHL patients who had relapsed after standard chemotherapy received repetitive intradermal vaccinations with recombinant idiotype Fab fragment derived from their tumor mixed with lipid-based adjuvant and concurrent subcutaneous GM-CSF at the same site. We now present the final analysis of cellular immune responses in this cohort. Peripheral blood lymphocytes (PBL) were obtained prior to and on various time points during and after vaccinations. Cryopreserved PBL were stimulated twice by autologous dendritic cells (DC) exposed to the autologous Fab protein for cross-presentation as MHC class I-bound peptides. INFγ-secreting cells were subsequently quantified by ELISPOT with Fab-presenting DC. Alternatively, freshly thawed PBL were directly assayed with recombinant Fab by ELISPOT without prestimulation. An increase in the frequency of Fab-responding PBL was detected in 7 of 15 evaluable patients with the prestimulation assay and in 4 of 10 patients by direct quantitation, resulting in a combined cellular response rate of 53% (9 of 17). A cellular immune response showed a trend for correlation with extended progression-free survival (p=0.08). T cell responses were predominantly idiotype-specific since lesser or no increases in IFNγ-secreting cells were detected against light chain- and VH family-matched control Fabs. Interestingly, a much higher base-line reactivity was observed against the control Fabs in comparison to the patient’s lymphoma Fab in four patients, pointing to the possibility of tumor-specific anergy in lymphoma patients that can at least be partially corrected by active immunization. In an effort to identify the MHC class I-presented idiotype-derived peptides, potential binding motifs were defined by reverse immunology with the SYFPEITHI algorithm (www.syfpeithi.de). Ten candidate peptides from the variable and constant region of an immune responder’s idiotype heavy chain were synthesized and evaluated with post-vaccination PBL by ELISPOT without prestimulation. A peptide derived from the CDR2 region showed a significantly higher response compared to an unrelated peptide control (p=0.0013). Additional peptides derived from the FWR1, CDR1, and CDR2 also showed a significant stimulation, but only in comparison to a no peptide control. ELISPOT offers a valuable tool to monitor cellular immune reponses and demonstrates successful induction of tumor immunity in pretreated, tumor bearing and immunosuppressed B cell lymphoma patients. Supported by Deutsche Krebshilfe


Sign in / Sign up

Export Citation Format

Share Document