scholarly journals Importance of tailoring lattice strain in halide perovskite crystals

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Hui-Seon Kim ◽  
Nam-Gyu Park

AbstractIn this review paper, the residual strain of a polycrystalline halide perovskite film is systematically studied based on its structural inhomogeneity, which is closely correlated to the local carrier dynamics caused by a modulated electronic band structure. Long-range collective strain ordering is responsible for the overall structural properties, consequently determining the optoelectronic properties of the perovskite film. Notably, the perovskite phase stability is strongly affected by the internal strain, favoring a lower energy state. The important parameters affecting the residual strain in a real perovskite film, ranging from thermal stress to lattice mismatch and compositional inhomogeneity, are subsequently introduced along with their impacts on the optoelectronic properties and/or the stability of the crystals.

2003 ◽  
Vol 762 ◽  
Author(s):  
R. Biswas ◽  
B. C. Pan

AbstractMaterials grown close to the phase boundary of amorphous and microcrystalline growth have the best electronic properties for solar cells. Systematic molecular dynamics methods have generated such nano-crystalline silicon, consisting of a mixed phase of nano-crystallites in an amorphous matrix, using an embedding method. An excess density of H resides on the surface of the nanocrystallites. The structure of this heterogeneous phase will be characterized by atomic distribution functions and structure factors. The electronic band structure of smaller models of nanocrystalline silicon reveals no midgap states and is similar to a-Si:H. There is a highly strained region surrounding the crystallites. The presence of localized strain region may increase the stability of the material.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shabir Ahmad Mir ◽  
Dinesh C. Gupta

AbstractThrough the conventional DFT computation, we have designed new oxide double perovskites Ba2FeNiO6 and Ba2CoNiO6. The structural and thermodynamic stabilities are predicted by optimizing the crystal structure and evaluation of enthalpy of formation, respectively. Then by using the optimized lattice constant, we have explored the different physical properties. The GGA + mBJ electronic band-structure illustrates Ba2FeNiO6 is a half-metal with 100% spin polarization at the Fermi level. While Ba2CoNiO6 shows a ferromagnetic semiconducting nature. The change in the electronic structure when Fe is replaced by Co is explained with the help of the orbital diagram and exchange interaction. The eg-eg hybridization that happens via O-p states is strong because Fe–O–Ni and Co–O–Ni bond angles are strictly 180°. The narrow bandgaps in the semiconducting channels prompted us to analyze the applicability of these materials towards thermoelectric technology. Besides this, we have investigated the dependency of transport properties on electronic band structure. The semiconducting nature in Ba2CoNiO6 results in a significant ZT around 0.8 at room temperature makes it suitable for wasted-energy regeneration


2017 ◽  
Vol 72 (9) ◽  
pp. 843-853 ◽  
Author(s):  
Cansu Çoban

AbstractThe pressure dependent behaviour of the structural, electronic, mechanical, vibrational, and thermodynamic properties of Pd2TiX (X=Ga, In) Heusler alloys was investigated by ab initio calculations. The lattice constant, the bulk modulus and its first pressure derivative, the electronic band structure and the density of states (DOS), mechanical properties such as elastic constants, anisotropy factor, Young’s modulus, etc., the phonon dispersion curves and phonon DOS, entropy, heat capacity, and free energy were obtained under pressure. It was determined that the calculated lattice parameters are in good agreement with the literature, the elastic constants obey the stability criterion, and the phonon dispersion curves have no negative frequency which shows that the compounds are stable. The band structures at 0, 50, and 70 GPa showed valence instability at the L point which explains the superconductivity in Pd2TiX (X=Ga, In).


Nanoscale ◽  
2019 ◽  
Vol 11 (18) ◽  
pp. 9000-9007 ◽  
Author(s):  
Imran Muhammad ◽  
Huanhuan Xie ◽  
Umer Younis ◽  
Yu Qie ◽  
Waseem Aftab ◽  
...  

Motivated by the feasibility of hybridizing C- and BN-units as well as the recent synthesis of a triphenylene-graphdiyne (TpG) monolayer, for the first time we explore the stability and electronic band structure of a Tp-BNyne monolayer composed of C-chains and the BN analog of triphenylene (Tp-BNyne) by using density functional theory.


2019 ◽  
Vol 21 (27) ◽  
pp. 14541-14545 ◽  
Author(s):  
Myung Joo Cha ◽  
Yu Jung Park ◽  
Jung Hwa Seo ◽  
Bright Walker

The electronic properties of the interface between Au and the lead halide perovskite (CH3NH3PbI3−xClx) were investigated by ultraviolet photoelectron spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).


2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sahar Sharifzadeh

<div> <div> <div> <p>Here, we present an extensive first- principles study of the structural and optoelectronic properties of the two proposed structures of borophene under strain. With a density functional theory analysis, we determine that the optical absorbance and electronic band structure are continuously tunable upon application of few percent of strain. While both structures remain metallic with moderate strains of up to 6%, key features of the band structure, as well as the in-plane anisotropy of the complex dielectric function and optical absorption can be significantly modified. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document