scholarly journals Frequent germplasm exchanges drive the high genetic diversity of Chinese-cultivated common apricot germplasm

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Qiuping Zhang ◽  
Diyang Zhang ◽  
Kang Yu ◽  
Jingjing Ji ◽  
Ning Liu ◽  
...  

AbstractThe genetic diversity of germplasm is critical for exploring genetic and phenotypic resources and has important implications for crop-breeding sustainability and improvement. However, little is known about the factors that shape and maintain genetic diversity. Here, we assembled a high-quality chromosome-level reference of the Chinese common apricot ‘Yinxiangbai’, and we resequenced 180 apricot accessions that cover four major ecogeographical groups in China and other accessions from occidental countries. We concluded that Chinese-cultivated common apricot germplasms possessed much higher genetic diversity than those cultivated in Western countries. We also detected seven migration events among different apricot groups, where 27% of the genome was identified as being introgressed. Remarkably, we demonstrated that these introgressed regions drove the current high level of germplasm diversity in Chinese-cultivated common apricots by introducing different genes related to distinct phenotypes from different cultivated groups. Our results highlight the consideration that introgressed regions may provide an important reservoir of genetic resources that can be used to sustain modern breeding programs.

Botany ◽  
2010 ◽  
Vol 88 (8) ◽  
pp. 765-773 ◽  
Author(s):  
Ivandilson Pessoa Pinto de Menezes ◽  
Paulo Augusto Vianna Barroso ◽  
Lúcia Vieira Hoffmann ◽  
Valeska Silva Lucena ◽  
Marc Giband

Mocó cotton ( Gossypium hirsutum  L. race marie-galante (Watt) Hutch.) is a potential source of valuable alleles for breeding programs, mainly because of its great adaptability to semi-arid conditions. With the aim of quantifying mocó cotton genetic variability, 187 plants collected in the northeast of Brazil were evaluated using 12 microsatellite markers. A total of 62 alleles were amplified, ranging from three to eight polymorphic alleles per locus. Total genetic diversity was high (0.52), and when measured on a per state basis, was of 0.37 on average. The population showed a low level of heterozygozity (HO = 0.16), reflecting a high level of endogamy (FIS = 0.67). Phylogenetic analysis using the neighbor-joining method revealed that plants sampled in different states tended to cluster according to their geographic origin, except for those collected in the states of Paraíba and Rio Grande do Norte, which grouped together. Plants from the state of Piauí formed two groups, one with an apparent allelic contribution from G. barbadense, while the second group of plants was closer to those from the states of Paraíba and Rio Grande do Norte. Despite the high genetic diversity that was observed in the remaining populations, urgent conservation efforts should be undertaken, owing to the high level of endogamy and accelerated extinction process that characterizes these populations. Such efforts should focus on the collection and ex situ maintenance of representative genetic diversity.


2009 ◽  
Vol 99 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Laura I. Weber ◽  
Cintia G. Hildebrand ◽  
Anderson Ferreira ◽  
Gustavo Pedarassi ◽  
José A. Levy ◽  
...  

A genetic study of the neotropical river otter Lontra longicaudis (Olfers, 1818), which has an unknown conservation status, was carried out at the Taim Ecological Station and the margins of the Vargas stream, Rio Grande do Sul, southern Brazil. Faecal samples were collected, and DNA was extracted using a silica-guanidine method. Five microsatellite loci were amplified using PCR with heterologous primers previously described for Lutra lutra (Linnaeus, 1758). Sixteen faecal samples out of 29 from Taim and 11 out of 14 from Vargas stream margins contained enough DNA for genetic analysis. A total of 49 different alleles were found at both localities, from which 18 were exclusively found in individuals from Taim and 17 were exclusives from Vargas individuals. The most common allele was the same at both locations for three loci (Lut715, Lut733, and Lut818). A high level of genetic diversity was found at both sites (NeTaim=4.1, HoTaim=0.299, HeTaim=0.681; NeVargas=4.9, HoVargas=0.355, HeVargas=0.724), being higher at the Vargas stream site. A high and significant level of heterozygote deficiency was observed at most loci according to the χ2 test. The homogeneity χ2 test (P<0.001) showed that there were significant differences in the allele frequencies between the two locations. Genotyping for more than one locus was possible in 81.5% of samples, from which only 37% were possible to genotype for more than three loci. A low degree of relatedness was found among individuals from Taim (R=0.055±0.310), but an even lower value of relatedness was found at the Vargas site (R= -0.285±0.440). The significant degree of differentiation (I=0.890; F ST=0.059) found between Taim and Vargas individuals suggests that there is more than one population of otters in the southern extreme of Brazil, which probably are associated with the water body systems found in this region, the Mirim and the Caiuvá/Flores/Mangueira Lagoons. The high genetic diversity and low relatedness found at the Vargas stream, lead us to believe that the Vargas stream may be acting as a corridor between these water bodies for otter dispersion.


HortScience ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 275-282 ◽  
Author(s):  
Saadat Sarikhani Khorami ◽  
Kazem Arzani ◽  
Ghasem Karimzadeh ◽  
Abdolali Shojaeiyan ◽  
Wilco Ligterink

Plant genetic diversity is the fundamental of plant-breeding programs to improve desirable characteristics. Hence, evaluation of genetic diversity is the first step in fruit-breeding programs. Accordingly, the current study was carried out to evaluate 25 superior walnut genotypes in respect of phenotypic and cytological characteristics. For this purpose, 560 walnut genotypes in southwest of Iran were evaluated based on UPOV and International Plant Genetic Resources Institute (IPGRI) descriptor. After a 2-year primary evaluation, 25 superior genotypes were selected for future phenotypic and genome size assessment. Flow cytometry was used to estimate genome size of the selected superior genotypes. A high genetic diversity was found in walnut population collected from the southwest of Iran. The selected superior genotypes had high yield, lateral bearing, thin-shell thickness (0.90–1.64 mm), high nut (12.54–19.80 g) and kernel (7.02–9.91 g) weight with light (L) to extra light (EL) kernel color which easily can be removed from the shell. Also, FaBaCh2 genotype turned out to be protogynous being important as a pollinizer cultivar. In addition to extensive phenotypic analysis, genome size was determined. The studied genotypes were diploid (2n = 2x = 32) and varied in genome size from 1.29 (FaBaAv2) to 1.40 pg (FaBaNs12). Correlation analysis showed that lateral bearing, budbreak date, nut size, and weight were the main variables contributing to walnut production. A linear relationship was found between genome size and nut weight (r = 0.527**), kernel weight (r = 0.551**), and nut size index (NSI) (r = 0.487**). Therefore, genome size can be considered as a strong and valuable tool to predict nut and kernel weight and nut size.


Botany ◽  
2016 ◽  
Vol 94 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Nader Rokni ◽  
Ebrahim Mohammadi Goltapeh ◽  
Alireza Shafeinia ◽  
Naser Safaie

Agaricus bisporus (Lange) Imbach is the most widely cultivated mushroom in Iran. Lack of diversity in mushroom crops, especially where disease is concerned, creates a crucial risk for the currently grown cultivars. The aim of this study was to assess the genetic diversity among Iranian wild strains and some commercial cultivars by using microsatellite markers. Eighteen codominant microsatellite markers of A. bisporus (AbSSR) were used to distinguish 17 wild and commercial strains. All of the microsatellite markers used in this research gave clear banding patterns, and only one strain remained undistinguished. Among 106 generated alleles, the wild subgroup presented 53 alleles never found both in brown and white commercial cultivars, and 42 alleles never found in commercial brown strains. The dendrogram obtained by UPGMA clustering analysis separated A. bisporus strains into six groups. Based on our results, the high level of genetic diversity among Iranian wild strains, compared with the commercial strains, provides a new and promising source of diversity for A. bisporus breeding programs. To our knowledge this is the first relevant study of biodiversity in native Iranian populations of A. bisporus.


2002 ◽  
Vol 53 (6) ◽  
pp. 629 ◽  
Author(s):  
J. M. Musial ◽  
K. E. Basford ◽  
J. A. G. Irwin

Lucerne (Medicago sativa L.) is autotetraploid, and predominantly allogamous. This complex breeding structure maximises the genetic diversity within lucerne populations making it difficult to genetically discriminate between populations. The objective of this study was to evaluate the level of random genetic diversity within and between a selection of Australian-grown lucerne cultivars, with tetraploid M. falcata included as a possible divergent control source. This diversity was evaluated using random amplified polymorphic DNA (RAPDs). Nineteen plants from each of 10 cultivars were analysed. Using 11 RAPD primers, 96 polymorphic bands were scored as present or absent across the 190 individuals. Genetic similarity estimates (GSEs) of all pair-wise comparisons were calculated from these data. Mean GSEs within cultivars ranged from 0.43 to 0.51. Cultivar Venus (0.43) had the highest level of intra-population genetic diversity and cultivar Sequel HR (0.51) had the lowest level of intra-population genetic diversity. Mean GSEs between cultivars ranged from 0.31 to 0.49, which overlapped with values obtained for within-cultivar GSE, thus not allowing separation of the cultivars. The high level of intra- and inter-population diversity that was detected is most likely due to the breeding of synthetic cultivars using parents derived from a number of diverse sources. Cultivar-specific polymorphisms were only identified in the M. falcata source, which like M. sativa, is outcrossing and autotetraploid. From a cluster analysis and a principal components analysis, it was clear that M. falcata was distinct from the other cultivars. The results indicate that the M. falcata accession tested has not been widely used in Australian lucerne breeding programs, and offers a means of introducing new genetic diversity into the lucerne gene pool. This provides a means of maximising heterozygosity, which is essential to maximising productivity in lucerne.


1998 ◽  
Vol 23 ◽  
pp. 49-67 ◽  
Author(s):  
S. D. Lukefahr

SummaryPresently, there is little organization or cooperation among countries with rabbit breeding programs with the common aim of maintaining genetic diversity, with the exception of Europe and the Mediterranean region. Particularly in the lesser developed countries (LDC's), there is limited evidence that maintaining genetic diversity in rabbit populations is even a national priority. Based on consultancies and project experiences in over fifteen LDC's, and limited reports from the literature, evaluations of breeding programs at national rabbit breeding centers have generally been less than encouraging with regard to the management of genetic resources: utilization and conservation. The purpose of this position paper is to review rabbit genetic resources management practices and trends in rabbit breeding program development which pertain to genetic resources utilization and conservation issues, and with special emphasis on the LDC's. Several measures are discussed that could enhance breeding program integrity, greater benefit limited-resource farmers, and also foster international and regional participation in rabbit genetic resources conservation programs.


Author(s):  
Xabi Cazenave ◽  
Bernard Petit ◽  
Marc Lateur ◽  
Hilde Nybom ◽  
Jiri Sedlak ◽  
...  

Abstract Genomic selection is an attractive strategy for apple breeding that could reduce the length of breeding cycles. A possible limitation to the practical implementation of this approach lies in the creation of a training set large and diverse enough to ensure accurate predictions. In this study, we investigated the potential of combining two available populations, i.e. genetic resources and elite material, in order to obtain a large training set with a high genetic diversity. We compared the predictive ability of genomic predictions within-population, across-population or when combining both populations, and tested a model accounting for population-specific marker effects in this last case. The obtained predictive abilities were moderate to high according to the studied trait and small increases in predictive ability could be obtained for some traits when the two populations were combined into a unique training set. We also investigated the potential of such a training set to predict hybrids resulting from crosses between the two populations, with a focus on the method to design the training set and the best proportion of each population to optimize predictions. The measured predictive abilities were very similar for all the proportions, except for the extreme cases where only one of the two populations was used in the training set, in which case predictive abilities could be lower than when using both populations. Using an optimization algorithm to choose the genotypes in the training set also led to higher predictive abilities than when the genotypes were chosen at random. Our results provide guidelines to initiate breeding programs that use genomic selection when the implementation of the training set is a limitation.


Author(s):  
Ahmed Medhat Mohamed Al-Naggar ◽  
Mohamed Abd El-Maboud Abd El-Shafi ◽  
Mohamed Helmy El-Shal ◽  
Ali Hassan Anany

To increase the genetic progress in wheat (Triticum aestivum L.) yield, breeders search for germplasm of high genetic diversity, one of them is the landraces. The present study aimed at evaluating genetic diversity of 20 Egyptian wheat landraces and two cultivars using microsatellite markers (SSRs). Ten SSR markers amplified a total of 27 alleles in the set of 22 wheat accessions, of which 23 alleles (85.2%) were polymorphic. The majority of the markers showed high polymorphism information content (PIC) values (0.67-0.94), indicating the diverse nature of the wheat accessions and/or highly informative SSR markers used in this study. The genotyping data of the SSR markers were used to assess genetic variation in the wheat accessions by dendrogram. The highest genetic distance was found between G21 (Sakha 64; an Egyptian cultivar) and the landrace accession No. 9120 (G11). These two genotypes could be used as parents in a hybridization program followed by selection in the segregating generations, to identify some transgressive segregates of higher grain yield than both parents. The clustering assigned the wheat genotypes into four groups based on SSR markers. The results showed that the studied SSR markers, provided sufficient polymorphism and reproducible fingerprinting profiles for evaluating genetic diversity of wheat landraces. The analyzed wheat landraces showed a good level of genetic diversity at the molecular level. Molecular variation evaluated in this study of wheat landraces can be useful in traditional and molecular breeding programs.


2021 ◽  
Author(s):  
E. Lamalakshmi Devi ◽  
Umakanta Ngangkham ◽  
Akoijam Ratankumar Singh ◽  
Bhuvaneswari S ◽  
Konsam Sarika ◽  
...  

Abstract North- Eastern parts of India fall under Eastern Himalayan region and it is a diversity hotspot of many crops including maize. Evaluation of genetic diversity is required to tape the potentiality of genetic resources in any crop improvement programmes. In the present study, genetic diversity at fifty two microsatellite markers were conducted in 30 early maize inbreds developed from local landraces of NE India. Genetic diversity analysis revealed a total of 189 alleles with a mean of 3.63 alleles/ locus. The allele size ranged from 50 bp (phi 036) to 295 bp (p 101049) which revealed a high level of genetic diversity among the loci. The PIC among the 30 genotypes ranged from 0.17 (umc 1622) to 0.76 (umc 1153) with an average value of 0.49. The value of Expected Heterozygosity (HExp) ranged from 0.19 to 0.80 with an average of 0.57, whereas the Observed Heterozygosity (HObs) ranged from 0 to 0.89 with a mean of 0.14.The genetic dissimilarity between the genotype pairs ranged from 0.40 to 0.64 with a mean value of 0.57. Cluster analysis grouped the 30 inbreds into distinct three sub-clusters. Similarly, population structure and principal coordinate analysis) analysis also classified the 30 inbred lines into three-subpopulations. AMOVA revealed that 6% of total variance is due to differences among populations, while 94% of total molecular variance is accounted by within populations. Marker-trait associations showed a total of twelve SSR markers significantly associated with seven agronomic traits. From the present finding, these results show that the thirty maize inbreds have high genetic diversity which would be useful for choosing promising parents and for making cross combination based on genetic distance and clustering for genetic improvement programmes of maize.


2021 ◽  
Author(s):  
Xabi Cazenave ◽  
Bernard Petit ◽  
Francois Laurens ◽  
Charles-Eric Durel ◽  
Helene Muranty

Genomic selection is an attractive strategy for apple breeding that could reduce the length of breeding cycles. A possible limitation to the practical implementation of this approach lies in the creation of a training set large and diverse enough to ensure accurate predictions. In this study, we investigated the potential of combining two available populations, i.e. genetic resources and elite material, in order to obtain a large training set with a high genetic diversity. We compared the predictive ability of genomic predictions within-population, across-population or when combining both populations, and tested a model accounting for population-specific marker effects in this last case. The obtained predictive abilities were moderate to high according to the studied trait and were always highest when the two populations were combined into a unique training set. We also investigated the potential of such a training set to predict hybrids resulting from crosses between the two populations, with a focus on the method to design the training set and the best proportion of each population to optimize predictions. The measured predictive abilities were very similar for all the proportions, except for the extreme cases where only one of the two populations was used in the training set, in which case predictive abilities could be lower than when using both populations. Using an optimization algorithm to choose the genotypes in the training set also led to higher predictive abilities than when the genotypes were chosen at random. Our results provide guidelines to initiate breeding programs that use genomic selection when the implementation of the training set is a limitation.


Sign in / Sign up

Export Citation Format

Share Document