scholarly journals First-order spatial coherence measurements in a thermalized two-dimensional photonic quantum gas

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Tobias Damm ◽  
David Dung ◽  
Frank Vewinger ◽  
Martin Weitz ◽  
Julian Schmitt
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Clifford V. Johnson ◽  
Felipe Rosso

Abstract Recent work has shown that certain deformations of the scalar potential in Jackiw-Teitelboim gravity can be written as double-scaled matrix models. However, some of the deformations exhibit an apparent breakdown of unitarity in the form of a negative spectral density at disc order. We show here that the source of the problem is the presence of a multi-valued solution of the leading order matrix model string equation. While for a class of deformations we fix the problem by identifying a first order phase transition, for others we show that the theory is both perturbatively and non-perturbatively inconsistent. Aspects of the phase structure of the deformations are mapped out, using methods known to supply a non-perturbative definition of undeformed JT gravity. Some features are in qualitative agreement with a semi-classical analysis of the phase structure of two-dimensional black holes in these deformed theories.


1990 ◽  
Vol 45 (11-12) ◽  
pp. 1219-1229 ◽  
Author(s):  
D.-A. Becker ◽  
E. W. Richter

AbstractA generalization of the usual method of similarity analysis of differential equations, the method of partially invariant solutions, was introduced by Ovsiannikov. The degree of non-invariance of these solutions is characterized by the defect of invariance d. We develop an algorithm leading to partially invariant solutions of quasilinear systems of first-order partial differential equations. We apply the algorithm to the non-linear equations of the two-dimensional non-stationary ideal MHD with a magnetic field perpendicular to the plane of motion.


1972 ◽  
Vol 39 (3) ◽  
pp. 689-695 ◽  
Author(s):  
W. W. Recker

The two-dimensional equations of magnetoelastodynamics are considered as a symmetric hyperbolic system of linear first-order partial-differential equations in three independent variables. The characteristic properties of the system are determined and a numerical method for obtaining the solution to mixed initial and boundary-value problems in plane magnetoelastodynamics is presented. Results on the von Neumann necessary condition are presented. Application of the method to a problem which has a known solution provides further numerical evidence of the convergence and stability of the method.


1987 ◽  
Vol 01 (05n06) ◽  
pp. 239-244
Author(s):  
SERGE GALAM

A new mechanism to explain the first order ferroelastic—ferroelectric transition in Terbium Molybdate (TMO) is presented. From group theory analysis it is shown that in the two-dimensional parameter space ordering along either an axis or a diagonal is forbidden. These symmetry-imposed singularities are found to make the unique stable fixed point not accessible for TMO. A continuous transition even if allowed within Landau theory is thus impossible once fluctuations are included. The TMO transition is therefore always first order. This explanation is supported by experimental results.


1988 ◽  
Vol 187 ◽  
pp. 487-506 ◽  
Author(s):  
I. P. Castro ◽  
W. H. Snyder

In this paper experimental measurements of the time-dependent velocity and density perturbations upstream of obstacles towed through linearly stratified fluid are presented. Attention is concentrated on two-dimensional obstacles which generate turbulent separated wakes at Froude numbers, based on velocity and body height, of less than 0.5. The form of the upstream columnar modes is shown to be largely that of first-order unattenuating disturbances, which have little resemblance to the perturbations described by small-obstacle-height theories. For two-dimensional obstacles the disturbances are similar to those found by Wei, Kao & Pao (1975) and it is shown that provided a suitable obstacle drag coefficient is specified, the lowest-order modes (at least) are quantitatively consistent with the results of the Oseen inviscid model.Discussion of some results of similar measurements upstream of three-dimensional obstacles, the importance of towing tank endwalls and the relevance of the Foster & Saffman (1970) theory for the limit of zero Froude number is also included.


2016 ◽  
Vol 807 ◽  
pp. 87-134 ◽  
Author(s):  
Mark Short ◽  
James J. Quirk ◽  
Chad D. Meyer ◽  
Carlos Chiquete

We study the physics of steady detonation wave propagation in a two-dimensional circular arc via a Detonation Shock Dynamics (DSD) surface evolution model. The dependence of the surface angular speed and surface spatial structure on the inner arc radius ($R_{i}$), the arc thickness ($R_{e}-R_{i}$, where $R_{e}$ is the outer arc radius) and the degree of confinement on the inner and outer arc is examined. We first analyse the results for a linear $D_{n}$–$\unicode[STIX]{x1D705}$ model, in which the normal surface velocity $D_{n}=D_{CJ}(1-B\unicode[STIX]{x1D705})$, where $D_{CJ}$ is the planar Chapman–Jouguet velocity, $\unicode[STIX]{x1D705}$ is the total surface curvature and $B$ is a length scale representative of a reaction zone thickness. An asymptotic analysis assuming the ratio $B/R_{i}\ll 1$ is conducted for this model and reveals a complex surface structure as a function of the radial variation from the inner to the outer arc. For sufficiently thin arcs, where $(R_{e}-R_{i})/R_{i}=O(B/R_{i})$, the angular speed of the surface depends on the inner arc radius, the arc thickness and the inner and outer arc confinement. For thicker arcs, where $(R_{e}-R_{i})/R_{i}=O(1)$, the angular speed does not depend on the outer arc radius or the outer arc confinement to the order calculated. It is found that the leading-order angular speed depends only on $D_{CJ}$ and $R_{i}$, and corresponds to a Huygens limit (zero curvature) propagation model where $D_{n}=D_{CJ}$, assuming a constant angular speed and perfect confinement on the inner arc surface. Having the normal surface speed depend on curvature requires the insertion of a boundary layer structure near the inner arc surface. This is driven by an increase in the magnitude of the surface wave curvature as the inner arc surface is approached that is needed to meet the confinement condition on the inner arc surface. For weak inner arc confinement, the surface wave spatial variation with the radial coordinate is described by a triple-deck structure. The first-order correction to the angular speed brings in a dependence on the surface curvature through the parameter $B$, while the influence of the inner arc confinement on the angular velocity only appears in the second-order correction. For stronger inner arc confinement, the surface wave structure is described by a two-layer solution, where the effect of the confinement on the angular speed is promoted to the first-order correction. We also compare the steady-state arc solution for a PBX 9502 DSD model to an experimental two-dimensional arc geometry validation test.


2017 ◽  
Vol 147 (5) ◽  
pp. 1041-1089 ◽  
Author(s):  
Georgy Kitavtsev ◽  
Stephan Luckhaus ◽  
Angkana Rüland

In this paper we are interested in the microscopic modelling of a two-dimensional two-well problem that arises from the square-to-rectangular transformation in (two-dimensional) shape-memory materials. In this discrete set-up, we focus on the surface energy scaling regime and further analyse the Hamiltonian that was introduced by Kitavtsev et al. in 2015. It turns out that this class of Hamiltonians allows for a direct control of the discrete second-order gradients and for a one-sided comparison with a two-dimensional spin system. Using this and relying on the ideas of Conti and Schweizer, which were developed for a continuous analogue of the model under consideration, we derive a (first-order) continuum limit. This shows the emergence of surface energy in the form of a sharp-interface limiting model as well the explicit structure of the minimizers to the latter.


Sign in / Sign up

Export Citation Format

Share Document