scholarly journals Microscale residual stresses in additively manufactured stainless steel

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Wen Chen ◽  
Thomas Voisin ◽  
Yin Zhang ◽  
Jean-Baptiste Florien ◽  
Christopher M. Spadaccini ◽  
...  

Abstract Additively manufactured (AM) metallic materials commonly possess substantial microscale internal stresses that manifest as intergranular and intragranular residual stresses. However, the impact of these residual stresses on the mechanical behaviour of AM materials remains unexplored. Here we combine in situ synchrotron X-ray diffraction experiments and computational modelling to quantify the lattice strains in different families of grains with specific orientations and associated intergranular residual stresses in an AM 316L stainless steel under uniaxial tension. We measure pronounced tension–compression asymmetries in yield strength and work hardening for as-printed stainless steel, and show they are associated with back stresses originating from heterogeneous dislocation distributions and resultant intragranular residual stresses. We further report that heat treatment relieves microscale residual stresses, thereby reducing the tension–compression asymmetries and altering work-hardening behaviour. This work establishes the mechanistic connections between the microscale residual stresses and mechanical behaviour of AM stainless steel.

2011 ◽  
Vol 278 ◽  
pp. 48-53 ◽  
Author(s):  
Alain Jacques ◽  
Laura Dirand ◽  
Jean Philippe Chateau ◽  
Thomas Schenk ◽  
Olivier Ferry ◽  
...  

The combination of high temperature (1050°C -1150°C) testing and in situ high energy X-Ray diffraction measurements using synchrotron Three Crystal Diffractometry may give various insights into the mechanical behaviour of superalloys: measurement of the lattice mismatch, order within the ' phase, elastic constants, and dynamic response to changes in the experimental conditions. Several examples are given on the rafted AM1 superalloy, resulting from experiments at the ID15A (ESRF) and BW5 (DESY) high energy beamlines.


Author(s):  
Dong-Feng Li ◽  
Noel P. O’Dowd ◽  
Catrin M. Davies ◽  
Shu-Yan Zhang

In this study, the deformation behavior of an austenitic stainless steel is investigated at the microscale by means of in-situ neutron diffraction (ND) measurements in conjunction with finite-element (FE) simulations. Results are presented in terms of (elastic) lattice strains for selected grain (crystallite) families. The FE model is based on a crystallographic (slip system based) representation of the deformation at the microscale. The present study indicates that combined in-situ ND measurement and micromechanical modelling provides an enhanced understanding of the mechanical response at the microscale in engineering steels.


2018 ◽  
Author(s):  
Laura Abad Galán ◽  
Alexandre N. Sobolev ◽  
Eli Zysman-Colman ◽  
Mark Ogden ◽  
Massimiliano Massi

<i>β</i>-Triketonates have been recently used as chelating ligands for lanthanoid ions, presenting unique structures varying from polynuclear assemblies to polymers. In an effort to overcome low solubility of the complexes of tribenzoylmethane, four <i>β</i>-triketones with higher lipophilicity were synthesised. Complexation reactions were performed for each of these molecules using different alkaline bases in alcoholic media. X-ray diffraction studies suggested that the ligands were undergoing decomposition under the reaction conditions. This is proposed to be caused by <i>in situ</i>retro-Claisen condensation reactions, consistent with two examples that have been reported previously. The lability of the lanthanoid cations in the presence of a varying set of potential ligands gave rise to structures where one, two, or three of the molecules involved in the retro-Claisen condensationreaction were linked to the lanthanoid centres. These results, along with measurements of ligand decomposition in the presence of base alone, suggest that using solvents of lower polarity will mimimise the impact of the retro-Claisen condensation in these complexes. <br>


2021 ◽  
Vol 54 (5) ◽  
pp. 1379-1393
Author(s):  
Amirsalar Moslehy ◽  
Khalid A. Alshibli ◽  
Timothy J. Truster ◽  
Peter Kenesei ◽  
Wadi H. Imseeh ◽  
...  

Rock salt caverns have been extensively used as reliable repositories for hazardous waste such as nuclear waste, oil or compressed gases. Undisturbed rock salt deposits in nature are usually impermeable and have very low porosity. However, rock salt formations under excavation stresses can develop crack networks, which increase their porosities; and in the case of a connected crack network within the media, rock salt may become permeable. Although the relationship between the permeability of rock salt and the applied stresses has been reported in the literature, a microscopic study that investigates the properties influencing this relationship, such as the evolution of texture and internal stresses, has yet to be conducted. This study employs in situ 3D synchrotron micro-computed tomography and 3D X-ray diffraction (3DXRD) on two small-scale polycrystalline rock salt specimens to investigate the evolution of the texture and internal stresses within the specimens. The 3DXRD technique measures the 3D crystal structure and lattice strains within rock salt grains. The specimens were prepared under 1D compression conditions and have shown an initial {111} preferred texture, a dominant {110}〈110〉 slip system and no fully connected crack network. The {111} preferred texture under the unconfined compression experiment became stronger, while the {111}〈110〉 slip system became more prominent. The specimens did not have a fully connected crack network until applied axial stresses reached about 30 MPa, at a point where the impermeability of the material becomes compromised due to the development of multiple major cracks.


2007 ◽  
Vol 560 ◽  
pp. 23-28
Author(s):  
A. Mani-Medrano ◽  
Armando Salinas-Rodríguez

The effects of tensile deformation on the amount of hcp phase formed during a 3 hour isothermal aging at 800 °C is studied using in-situ X-ray diffraction and scanning electron microscopy. It is shown that the start of the isothermal martensitic transformation during aging of this material is delayed by prior plastic deformation. Nevertheless, the total amount of hcp phase present in the microstructure at the beginning of aging increases at a continuously decreasing rate due to stress-assisted transformation. This behavior is attributed to the relieving of internal stresses produced by plastic deformation prior to aging. Finally, during the last stage of aging, the amount of hcp phase in the microstructure increases as a result of isothermal martensitic transformation. It is suggested that the presence of mechanically-induced hcp phase during aging inhibits the thermally activated nucleation process that leads to the isothermal martensitic transformation.


2014 ◽  
Vol 996 ◽  
pp. 417-423 ◽  
Author(s):  
Arne Kromm ◽  
Thomas Kannengiesser

Results obtained from laboratory tests mostly need to be verified under fabrication conditions in order to incorporate design specifics (joint configuration and restraint), which effect the residual stress state considerably. For this purpose, multi-pass sub merged arc welding was performed in a special large-scale testing facility. The impact of varying interpass temperatures could be proven in-situ by means of a pronounced stress accumulation during welding and subsequent heat treatment accompanied by stress determination using X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document