Evolution of texture and internal stresses within polycrystalline rock salt using in situ 3D synchrotron computed tomography and 3D X-ray diffraction

2021 ◽  
Vol 54 (5) ◽  
pp. 1379-1393
Author(s):  
Amirsalar Moslehy ◽  
Khalid A. Alshibli ◽  
Timothy J. Truster ◽  
Peter Kenesei ◽  
Wadi H. Imseeh ◽  
...  

Rock salt caverns have been extensively used as reliable repositories for hazardous waste such as nuclear waste, oil or compressed gases. Undisturbed rock salt deposits in nature are usually impermeable and have very low porosity. However, rock salt formations under excavation stresses can develop crack networks, which increase their porosities; and in the case of a connected crack network within the media, rock salt may become permeable. Although the relationship between the permeability of rock salt and the applied stresses has been reported in the literature, a microscopic study that investigates the properties influencing this relationship, such as the evolution of texture and internal stresses, has yet to be conducted. This study employs in situ 3D synchrotron micro-computed tomography and 3D X-ray diffraction (3DXRD) on two small-scale polycrystalline rock salt specimens to investigate the evolution of the texture and internal stresses within the specimens. The 3DXRD technique measures the 3D crystal structure and lattice strains within rock salt grains. The specimens were prepared under 1D compression conditions and have shown an initial {111} preferred texture, a dominant {110}〈110〉 slip system and no fully connected crack network. The {111} preferred texture under the unconfined compression experiment became stronger, while the {111}〈110〉 slip system became more prominent. The specimens did not have a fully connected crack network until applied axial stresses reached about 30 MPa, at a point where the impermeability of the material becomes compromised due to the development of multiple major cracks.

2020 ◽  
Vol 22 (34) ◽  
pp. 18964-18975
Author(s):  
Dorota Matras ◽  
Antonis Vamvakeros ◽  
Simon D. M. Jacques ◽  
Vesna Middelkoop ◽  
Gavin Vaughan ◽  
...  

In situ XRD-CT and post-reaction SEM/EDX were used to study the solid-state chemistry and structural changes of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane reactors during the oxidative coupling of methane reaction.


2007 ◽  
Vol 539-543 ◽  
pp. 1519-1524 ◽  
Author(s):  
Klaus Dieter Liss ◽  
A. Bartels ◽  
Helmut Clemens ◽  
S. Bystrzanowski ◽  
A. Stark ◽  
...  

High-energy synchrotron X-ray diffraction is a novel and powerful tool for bulk studies of materials. In this study, it is applied for the investigation of an intermetallic γ-TiAl based alloy. Not only the diffraction angles, but also the morphology of reflections on the Debye-Scherrer rings are evaluated in order to approach lattice parameters and grain sizes as well as crystallographic relationships. An in-situ heating cycle from room temperature to 1362 °C has been conducted starting from massively transformed γ-TiAl which exhibits high internal stresses. With increasing temperature the occurrence of strain relaxation, chemical and phase separation, domain orientations, phase transitions, recrystallization processes, and subsequent grain growth can be observed. The data obtained by high-energy synchrotron X-ray diffraction, extremely rich in information, are interpreted step by step.


Author(s):  
Henry Proudhon ◽  
Nicolas Gueninchault ◽  
Samuel Forest ◽  
Wolfgang Ludwig

In this paper, we present a comprehensive 4D study of the early stage of plastic deformation in a polycrystalline binary AlLi alloy. The entire microstructure is mapped with X-ray diffraction contrast tomography and a set of bulk grains is further studied via X-ray topotomography during mechanical loading. The observed contrast is analyzed with respect to the slip system activation and the evolution of the orientation spread is measured as a function of applied strain. The experimental observations are augmented by the mechanical response predicted by crystal plasticity finite element simulations to analyze the onset of plasticity in details. Simulation results show a general agreement of the individual slip system activation during loading and that comparison with experiments at the length scale of the grains may be used to fine tune the constitutive model parameters.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1134-1141 ◽  
Author(s):  
Jean Marie Drezet ◽  
Bastien Mireux ◽  
Guven Kurtuldu

During solidification of metallic alloys, coalescence corresponds to the formation of solid bridges between grains when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behaviour of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at the rigidity temperature when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. This temperature, also called mechanical or tensile coherency temperature, is a major input parameter in numerical modelling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. The rigidity temperature has been determined in Al Zn alloys using in situ X-ray diffraction (XRD) during casting in a dog bone shaped mould. This set-up allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mould induces a hot spot at the middle of the sample which is irradiated by X-rays. Diffraction patterns were recorded every 0.5 s using a detector covering a 426 x 426 mm2area. The change of diffraction angles allowed us to observe agglomeration/decohesion of growing grain clusters and to determine a solid volume fraction at rigidity around 98 % depending on solidification time for grain refined Al 6.2 wt% Zn alloys.


2011 ◽  
Vol 278 ◽  
pp. 48-53 ◽  
Author(s):  
Alain Jacques ◽  
Laura Dirand ◽  
Jean Philippe Chateau ◽  
Thomas Schenk ◽  
Olivier Ferry ◽  
...  

The combination of high temperature (1050°C -1150°C) testing and in situ high energy X-Ray diffraction measurements using synchrotron Three Crystal Diffractometry may give various insights into the mechanical behaviour of superalloys: measurement of the lattice mismatch, order within the ' phase, elastic constants, and dynamic response to changes in the experimental conditions. Several examples are given on the rafted AM1 superalloy, resulting from experiments at the ID15A (ESRF) and BW5 (DESY) high energy beamlines.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2018 ◽  
Author(s):  
Henry Proudhon ◽  
Nicolas Guéninchault ◽  
Samuel Forest ◽  
Wolfgang Ludwig

In this paper, we present a comprehensive 4D study of the early stage of plastic deformation in a polycrystalline binary AlLi alloy. The entire microstructure is mapped with X-ray diffraction contrast tomography, and a set of bulk grains is further studied via X-ray topotomography during mechanical loading. The observed contrast is analyzed with respect to the slip system activation, and the evolution of the orientation spread is measured as a function of applied strain. The experimental observations are augmented by the mechanical response predicted by crystal plasticity finite element simulations to analyze the onset of plasticity in detail. Simulation results show a general agreement of the individual slip system activation during loading and that comparison with experiments at the length scale of the grains may be used to fine tune the constitutive model parameters.


Nano Letters ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 3811-3820 ◽  
Author(s):  
Donal P. Finegan ◽  
Antonis Vamvakeros ◽  
Lei Cao ◽  
Chun Tan ◽  
Thomas M. M. Heenan ◽  
...  

2010 ◽  
Vol 30 (1) ◽  
pp. 39-43 ◽  
Author(s):  
Petr S. Sokolov ◽  
Andrey N. Baranov ◽  
Christian Lathe ◽  
Vladimir L. Solozhenko

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 166
Author(s):  
Jennifer Girard ◽  
Reynold E. Silber ◽  
Anwar Mohiuddin ◽  
Haiyan Chen ◽  
Shun-ichiro Karato

We developed a stress sensor for in-situ deformation experiments using synchrotron radial X-ray diffraction. This stress sensor provided nearly diffraction-plane-independent stress that, when used in series with a sample, reduced the uncertainty of the average stress estimation acting on a sample. Here, we present the results of a study where pyrope was used as a stress sensor. Using a Deformation-DIA (D-DIA) high-pressure deformation apparatus, pyrope, olivine and alumina were deformed in the same run/cell assembly placed in series along the compression direction. Deformation experiments were conducted at pressures between 4 and 5 GPa and temperatures between 730 and 1273 K with strain-rates between 10−5 and 10−6 s−1. Stresses estimated from various (hkl) planes in pyrope were nearly the same; i.e., pyrope is plastically isotropic with ≤10 % variation with (hkl). However, stresses from various (hkl) planes in olivine and alumina varied by approximately a factor of 3. Comparisons between average stresses inferred from pyrope and those from different diffraction planes in olivine and alumina showed that the average stress in these materials evolved from low-end stress, estimated from various (hkl) planes at small strain, to high-end stress at a large strain. This suggests that the rate-controlling slip system in these materials changes from the soft to the hard slip system with strain.


Sign in / Sign up

Export Citation Format

Share Document