scholarly journals Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Julia C. Heiby ◽  
Benedikt Goretzki ◽  
Christopher M. Johnson ◽  
Ute A. Hellmich ◽  
Hannes Neuweiler

Abstract Web spiders connect silk proteins, so-called spidroins, into fibers of extraordinary toughness. The spidroin N-terminal domain (NTD) plays a pivotal role in this process: it polymerizes spidroins through a complex mechanism of dimerization. Here we analyze sequences of spidroin NTDs and find an unusually high content of the amino acid methionine. We simultaneously mutate all methionines present in the hydrophobic core of a spidroin NTD from a nursery web spider’s dragline silk to leucine. The mutated NTD is strongly stabilized and folds at the theoretical speed limit. The structure of the mutant is preserved, yet its ability to dimerize is substantially impaired. We find that side chains of core methionines serve to mobilize the fold, which can thereby access various conformations and adapt the association interface for tight binding. Methionine in a hydrophobic core equips a protein with the capacity to dynamically change shape and thus to optimize its function.

Author(s):  
Christoph Sommer ◽  
Hendrik Bargel ◽  
Nadine Raßmann ◽  
Thomas Scheibel

Abstract Bacterial infections are well recognised to be one of the most important current public health problems. Inhibiting adhesion of microbes on biomaterials is one approach for preventing inflammation. Coatings made of recombinant spider silk proteins based on the consensus sequence of Araneus diadematus dragline silk fibroin 4 have previously shown microbe-repellent properties. Concerning silicone implants, it has been further shown that spider silk coatings are effective in lowering the risk of capsular fibrosis. Here, microbial repellence tests using four opportunistic infection-related strains revealed additional insights into the microbe-repellent properties of spider silk-coated implants, exemplarily shown for silicone surfaces. Graphic Abstract


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0183397 ◽  
Author(s):  
Ali D. Malay ◽  
Kazuharu Arakawa ◽  
Keiji Numata

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3596
Author(s):  
Zaroug Jaleel ◽  
Shun Zhou ◽  
Zaira Martín-Moldes ◽  
Lauren M. Baugh ◽  
Jonathan Yeh ◽  
...  

The properties of native spider silk vary within and across species due to the presence of different genes containing conserved repetitive core domains encoding a variety of silk proteins. Previous studies seeking to understand the function and material properties of these domains focused primarily on the analysis of dragline silk proteins, MaSp1 and MaSp2. Our work seeks to broaden the mechanical properties of silk-based biomaterials by establishing two libraries containing genes from the repetitive core region of the native Latrodectus hesperus silk genome (Library A: genes masp1, masp2, tusp1, acsp1; Library B: genes acsp1, pysp1, misp1, flag). The expressed and purified proteins were analyzed through Fourier Transform Infrared Spectrometry (FTIR). Some of these new proteins revealed a higher portion of β-sheet content in recombinant proteins produced from gene constructs containing a combination of masp1/masp2 and acsp1/tusp1 genes than recombinant proteins which consisted solely of dragline silk genes (Library A). A higher portion of β-turn and random coil content was identified in recombinant proteins from pysp1 and flag genes (Library B). Mechanical characterization of selected proteins purified from Library A and Library B formed into films was assessed by Atomic Force Microscopy (AFM) and suggested Library A recombinant proteins had higher elastic moduli when compared to Library B recombinant proteins. Both libraries had higher elastic moduli when compared to native spider silk proteins. The preliminary approach demonstrated here suggests that repetitive core regions of the aforementioned genes can be used as building blocks for new silk-based biomaterials with varying mechanical properties.


2021 ◽  
Vol 893 ◽  
pp. 31-35
Author(s):  
Jin Lian Hu ◽  
Yuan Zhang Jiang ◽  
Lin Gu

Spiders silks have extraordinary strength and toughness simultaneously, thus has become dreamed materials by scientists and industries. Although there have been tremendous attempts to prepare fibers from genetically manufacture spider silk proteins, however, it has been still a huge challenge because of tedious procedure and high cost. Here, a facile spider-silk-mimicking strategy is reported for preparing highly scratchable polymers and supertough fibers from chemical synthesis route. Polymer films with high extensibility (>1200%) and supertough fibers (~387 MJ m-3) are achieved by introducing polypeptides with β-sheet and α-helical structure in polyureathane/urea polymers. Notabley,the toughness of the fiber is more than twice the reported value of a normal spider dragline silk, and comparable with the toughest spider silk, aciniform silk of Argiope trifasciata.


1992 ◽  
Vol 292 ◽  
Author(s):  
Mike Hinman ◽  
Zhengyu dong ◽  
Ming Xu ◽  
Randolph V. Lewis

AbstractDragline silk has been shown to consist of two proteins, Spidroins 1 and 2, which form this unique fiber. The cDNAs for these two proteins have been sequenced and a structure proposed which accounts for both the tensile strength and elasticity of dragline silk.


2021 ◽  
pp. 100114
Author(s):  
Tilman U. Esser ◽  
Vanessa T. Trossmann ◽  
Sarah Lentz ◽  
Felix B. Engel ◽  
Thomas Scheibel

2012 ◽  
Vol 13 (10) ◽  
pp. 3189-3199 ◽  
Author(s):  
Seth L. Young ◽  
Maneesh Gupta ◽  
Christoph Hanske ◽  
Andreas Fery ◽  
Thomas Scheibel ◽  
...  

Biomaterials ◽  
2012 ◽  
Vol 33 (28) ◽  
pp. 6650-6659 ◽  
Author(s):  
Stefanie Wohlrab ◽  
Susanne Müller ◽  
Andreas Schmidt ◽  
Stefanie Neubauer ◽  
Horst Kessler ◽  
...  

Author(s):  
J�ngst Tomasz ◽  
Schacht Kristin ◽  
Smolan Willi ◽  
Ewald Andrea ◽  
Scheibel Thomas ◽  
...  
Keyword(s):  

2019 ◽  
Vol 5 (8) ◽  
pp. 4023-4036 ◽  
Author(s):  
Thomas I. Harris ◽  
Chase A. Paterson ◽  
Farhad Farjood ◽  
Ian D. Wadsworth ◽  
Lori Caldwell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document