scholarly journals A ‘parameiosis’ drives depolyploidization and homologous recombination in Candida albicans

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew Z. Anderson ◽  
Gregory J. Thomson ◽  
Matthew P. Hirakawa ◽  
Richard J. Bennett

Abstract Meiosis is a conserved tenet of sexual reproduction in eukaryotes, yet this program is seemingly absent from many extant species. In the human fungal pathogen Candida albicans, mating of diploid cells generates tetraploid products that return to the diploid state via a non-meiotic process of depolyploidization known as concerted chromosome loss (CCL). Here, we report that recombination rates are more than three orders of magnitude higher during CCL than during normal mitotic growth. Furthermore, two conserved ‘meiosis-specific’ factors play central roles in CCL as SPO11 mediates DNA double-strand break formation while both SPO11 and REC8 regulate chromosome stability and promote inter-homolog recombination. Unexpectedly, SPO11 also promotes DNA repair and recombination during normal mitotic divisions. These results indicate that C. albicans CCL represents a ‘parameiosis’ that blurs the conventional boundaries between mitosis and meiosis. They also reveal parallels with depolyploidization in mammalian cells and provide potential insights into the evolution of meiosis.

2012 ◽  
Vol 40 (1) ◽  
pp. 173-178 ◽  
Author(s):  
Johanne M. Murray ◽  
Tom Stiff ◽  
Penny A. Jeggo

DNA DSBs (double-strand breaks) represent a critical lesion for a cell, with misrepair being potentially as harmful as lack of repair. In mammalian cells, DSBs are predominantly repaired by non-homologous end-joining or homologous recombination. The kinetics of repair of DSBs can differ widely, and recent studies have shown that the higher-order chromatin structure can dramatically affect the pathway utilized, the rate of repair and the genetic factors required for repair. Studies of the repair of DSBs arising within heterochromatic DNA regions have provided insight into the constraints that higher-order chromatin structure poses on repair and the processing that is uniquely required for the repair of such DSBs. In the present paper, we provide an overview of our current understanding of the process of heterochromatic DSB repair in mammalian cells and consider the evolutionary conservation of the processes.


2006 ◽  
Vol 26 (5) ◽  
pp. 1691-1699 ◽  
Author(s):  
Karen Cerosaletti ◽  
Jocyndra Wright ◽  
Patrick Concannon

ABSTRACT The Atm protein kinase is central to the DNA double-strand break response in mammalian cells. After irradiation, dimeric Atm undergoes autophosphorylation at Ser 1981 and dissociates into active monomers. Atm activation is stimulated by expression of the Mre11/Rad50/nibrin complex. Previously, we showed that a C-terminal fragment of nibrin, containing binding sites for both Mre11 and Atm, was sufficient to provide this stimulatory effect in Nijmegen breakage syndrome (NBS) cells. To discriminate whether nibrin's role in Atm activation is to bind and translocate Mre11/Rad50 to the nucleus or to interact directly with Atm, we expressed an Mre11 transgene with a C-terminal NLS sequence in NBS fibroblasts. The Mre11-NLS protein complexed with Rad50, localized to the nucleus in NBS fibroblasts, and associated with chromatin. However, Atm autophosphorylation was not stimulated in cells expressing Mre11-NLS, nor were downstream Atm targets phosphorylated. To determine whether nibrin-Atm interaction is necessary to stimulate Atm activation, we expressed nibrin transgenes lacking the Atm binding domain in NBS fibroblasts. The nibrin ΔAtm protein interacted with Mre11/Rad50; however, Atm autophosphorylation was dramatically reduced after irradiation in NBS cells expressing the nibrin ΔAtm transgenes relative to wild-type nibrin. These results indicate that nibrin plays an active role in Atm activation beyond translocating Mre11/Rad50 to the nucleus and that this function requires nibrin-Atm interaction.


2007 ◽  
Vol 85 (6) ◽  
pp. 663-674 ◽  
Author(s):  
Kendra L. Cann ◽  
Geoffrey G. Hicks

DNA double-strand breaks occur frequently in cycling cells, and are also induced by exogenous sources, including ionizing radiation. Cells have developed integrated double-strand break response pathways to cope with these lesions, including pathways that initiate DNA repair (either via homologous recombination or nonhomologous end joining), the cell-cycle checkpoints (G1–S, intra-S phase, and G2–M) that provide time for repair, and apoptosis. However, before any of these pathways can be activated, the damage must first be recognized. In this review, we will discuss how the response of mammalian cells to DNA double-strand breaks is regulated, beginning with the activation of ATM, the pinnacle kinase of the double-strand break signalling cascade.


Author(s):  
Przemek M. Krawczyk ◽  
Jan Stap ◽  
Ron A. Hoebe ◽  
Carel H. van Oven ◽  
Roland Kanaar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document