Tidal Freshwater Swamps of the Southeastern United States: Effects of Land Use, Hurricanes, Sea-level Rise, and Climate Change

Author(s):  
Thomas W. Doyle ◽  
Calvin P. O’Neil ◽  
Marcus P.V. Melder ◽  
Andrew S. From ◽  
Monica M. Palta
PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e80658 ◽  
Author(s):  
Joshua Steven Reece ◽  
Reed F. Noss ◽  
Jon Oetting ◽  
Tom Hoctor ◽  
Michael Volk

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Faming Wang ◽  
Xiaoliang Lu ◽  
Christian J. Sanders ◽  
Jianwu Tang

AbstractCoastal wetlands are large reservoirs of soil carbon (C). However, the annual C accumulation rates contributing to the C storage in these systems have yet to be spatially estimated on a large scale. We synthesized C accumulation rate (CAR) in tidal wetlands of the conterminous United States (US), upscaled the CAR to national scale, and predicted trends based on climate change scenarios. Here, we show that the mean CAR is 161.8 ± 6 g Cm−2 yr−1, and the conterminous US tidal wetlands sequestrate 4.2–5.0 Tg C yr−1. Relative sea level rise (RSLR) largely regulates the CAR. The tidal wetland CAR is projected to increase in this century and continue their C sequestration capacity in all climate change scenarios, suggesting a strong resilience to sea level rise. These results serve as a baseline assessment of C accumulation in tidal wetlands of US, and indicate a significant C sink throughout this century.


2020 ◽  
Vol 5 (11) ◽  
pp. 92 ◽  
Author(s):  
Rick Kool ◽  
Judy Lawrence ◽  
Martin Drews ◽  
Robert Bell

Sea-level rise increasingly affects low-lying and exposed coastal communities due to climate change. These communities rely upon the delivery of stormwater and wastewater services which are often co-located underground in coastal areas. Due to sea-level rise and associated compounding climate-related hazards, managing these networks will progressively challenge local governments as climate change advances. Thus, responsible agencies must reconcile maintaining Levels of Service as the impacts of climate change worsen over the coming decades and beyond. A critical question is whether such networks can continue to be adapted/protected over time to retain Levels of Service, or whether eventual retreat may be the only viable adaptation option? If so, at what performance threshold? In this paper, we explore these questions for stormwater and wastewater, using a dynamic adaptive pathway planning (DAPP) approach designed to address thresholds and increasing risk over time. Involving key local stakeholders, we here use DAPP to identify thresholds for stormwater and wastewater services and retreat options, and for developing a comprehensive and area-specific retreat strategy comprising pathway portfolios, retreat phases, potential land use changes, and for exploring pathway conflicts and synergies. The result is a prototype for an area near Wellington, New Zealand, where a managed retreat of water infrastructure is being considered at some future juncture. Dynamic adaptive strategies for managed retreats can help to reduce future disruption from coastal flooding, signal land use changes early, inform maintenance, and allow for gradual budget adjustments by the agencies that can manage expenditure over time. We present this stepwise process in a pathway form that can be communicated spatially and visually, thereby making a retreat a more manageable, sequenced, adaptation option for water agencies, and the communities they serve.


2013 ◽  
Vol 493 ◽  
pp. 259-274 ◽  
Author(s):  
JS Reece ◽  
D Passeri ◽  
L Ehrhart ◽  
SC Hagen ◽  
A Hays ◽  
...  

2019 ◽  
Author(s):  
Brooke L. Bateman ◽  
Lotem Taylor ◽  
Chad Wilsey ◽  
Joanna Wu ◽  
Geoffrey S. LeBaron ◽  
...  

AbstractClimate change is a significant threat to biodiversity globally, compounded by threats that could hinder species’ ability to respond through range shifts. However, little research has examined how future bird ranges may coincide with multiple stressors at a broad scale. Here, we assess the risk to 544 birds in the United States from future climate change threats under a mitigation-dependent global warming scenario of 1.5°C and an unmitigated scenario of 3.0°C. Threats considered included sea level rise, lake level change, human land cover conversion, and extreme weather events. We developed a gridded index of risk based on coincident threats, species richness, and richness of vulnerable species. To assign risk to individual species and habitat groups, we overlaid future bird ranges with threats to calculate the proportion of species’ ranges affected in both the breeding and non-breeding seasons. Nearly all species will face at least one new climate-related threat in each season and scenario analyzed. Even with lower species richness, the 3.0°C scenario had higher risk for species and groups in both seasons. With unmitigated climate change, multiple coincident threats will affect over 88% of the conterminous United States, and 97% of species could be affected by two or more climate-related threats. Some habitat groups will see up to 96% species facing three or more threats. However, climate change mitigation would reduce risk to birds from climate change-related threats across over 90% of the US. Across the threats included here, extreme weather events have the most significant influence on risk and the most extensive spatial coverage. Urbanization and sea level rise will also have disproportionate impacts on species relative to the area they cover. By incorporating threats into predictions of climate change impacts, this assessment provides a comprehensive picture of how climate change will affect birds and the places they need.


2021 ◽  
Vol 3 (1) ◽  
pp. 33-43
Author(s):  
Anushiya Jeganathan ◽  
Ramachandran Andimuthu ◽  
Palanivelu Kandasamy

Cities are dynamic systems resulting from the complex interaction of various socio-ecological and environmental developments. Climate change disproportionately affects cities mostly located in climate-sensitive areas; thus, these urban systems are the most critical in modern societies under changing climate scenarios, uncertain disruptions, and urban inhabitants' daily lives. It is essential to analyze the challenges in the metropolitan area through the lens of climate change. The present work analyses the challenges in Chennai, a coastal city in India and one of the chief industrial growth canters in Indian and South Asian region. The challenges are analyzed through the city’s system analysis via land use, green cover, population, and coastal hazards. Land use and green cover changes are studied through satellite images using ArcGIS and assessing coastal risks due to sea-level rise through GIS-based inundation model. There are drastic changes in land-use patterns; the green cover had reduced much, including agricultural and forest cover due to rapid urbanization. The land use has changed to 59.6% of the reduction in agriculture land, nearly 40% reduction in forest land, and 47% of the wetland over time. The observed mean sea level trend for Chennai is + 0.55 mm/year from 1916 to 2015 and the area of 21.75 sq. km is under the threat of inundation to 0.5m sea-level rise. The population growth, drastic changes in land use pattern, green cover reduction, and inundation due to sea-level rise increase the city's risks to climate change. There is a need to ensure that future land-use developments do not worsen the current climate risk level, either through influencing the hazards themselves or affecting the urban system's future vulnerability and adaptive capacity. The study also urges the zone level adaptation strategies to ensure the resilience of the city.


2019 ◽  
Vol 19 (3B) ◽  
pp. 227-237
Author(s):  
Pham Viet Hong ◽  
Tran Anh Tuan ◽  
Nguyen Thi Anh Nguyet

Today, environmental hazards and challenges are no longer confined to the national or regional scale but on the global scale. One of the biggest challenges for humanity is the natural disasters, global warming and sea level rise. The natural disasters causing serious consequences for human life, such as: Storms, floods, earthquakes, tsunamis, desertification, high tides... increase in frequency, intensity and scale. In recent years, Ca Mau province as well as coastal provinces of Vietnam is under great influence due to the impacts of climate change. One of the most affected districts in Ca Mau province is Ngoc Hien district. The district has a geographic location with three sides bordering the sea, one side bordering the river, a completely isolated terrain. The terrain is flat, strongly divided by the system of natural rivers and canals and intertwined canals, so it is constantly flooded by the sea. Ngoc Hien district is characterized by a sub-equatorial monsoon climate, directly affected by irregular semi-diurnal regime. The main purpose of the paper is to assess coastal vulnerability due to the impact of climate change over time with GIS-based remote sensing images. Remote sensing data with multi-time characteristics, collected in many periods and covering a wide area is an effective tool for monitoring shoreline fluctuations in particular and land use status of the study area in general.


2019 ◽  
Vol 2 (4) ◽  
pp. 161-166
Author(s):  
Tuan Ngoc Le ◽  
Phi Thi Yen Le ◽  
Bang Van Nguyen

Flooding is a concern phenomenon, especially in the context of climate change (CC) and sea level rise. This work aimed to establish indicators used to assess vulnerability (V) due to inundation on the basis of considering the exposure (E), sensitivity (S) and adaptive capacity (AC) of a system. By literature review, data analysis, and expert methods, 33 indicators for assessing vulnerability due to inundation were established, including 4 E, 11 S (divided into 4 groups: society, economic, environment, and land use), and 18 AC indicators (divided into 4 groups: human, financial, infrastructure, and society). This work resulted in an important basis for comprehensive evaluation of vulnerability due to inundation in the context of CC and proposing suitable solutions.


Sign in / Sign up

Export Citation Format

Share Document