scholarly journals Emotionotopy in the human right temporo-parietal cortex

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Giada Lettieri ◽  
Giacomo Handjaras ◽  
Emiliano Ricciardi ◽  
Andrea Leo ◽  
Paolo Papale ◽  
...  

AbstractHumans use emotions to decipher complex cascades of internal events. However, which mechanisms link descriptions of affective states to brain activity is unclear, with evidence supporting either local or distributed processing. A biologically favorable alternative is provided by the notion of gradient, which postulates the isomorphism between functional representations of stimulus features and cortical distance. Here, we use fMRI activity evoked by an emotionally charged movie and continuous ratings of the perceived emotion intensity to reveal the topographic organization of affective states. Results show that three orthogonal and spatially overlapping gradients encode the polarity, complexity and intensity of emotional experiences in right temporo-parietal territories. The spatial arrangement of these gradients allows the brain to map a variety of affective states within a single patch of cortex. As this organization resembles how sensory regions represent psychophysical properties (e.g., retinotopy), we propose emotionotopy as a principle of emotion coding.

2018 ◽  
Author(s):  
Giada Lettieri ◽  
Giacomo Handjaras ◽  
Emiliano Ricciardi ◽  
Andrea Leo ◽  
Paolo Papale ◽  
...  

AbstractHumans use emotions to decipher complex cascades of internal events. However, which mechanisms link descriptions of affective states to brain activity is unclear, with evidence supporting either local or distributed processing. A biologically favorable alternative is provided by the notion of gradient, which postulates the isomorphism between functional representations of stimulus features and cortical distance. Here, we use fMRI activity evoked by an emotionally charged movie and continuous ratings of the perceived emotion intensity to reveal the topographic organization of affective states. Results show that three orthogonal and spatially overlapping gradients encode the polarity, complexity and intensity of emotional experiences in right temporo-parietal territories. The spatial arrangement of these gradients allows the brain to map a variety of affective states within a single patch of cortex. As this organization resembles how sensory regions represent psychophysical properties (e.g., retinotopy), we propose emotionotopy as a principle of emotion coding.


2018 ◽  
Author(s):  
Beau Sievers ◽  
Carolyn Parkinson ◽  
Peter J. Kohler ◽  
James Hughes ◽  
Sergey V. Fogelson ◽  
...  

AbstractEmotional music and movement are human universals. Further, music and movement are subjectively linked: it is hard to imagine one without the other. One possible reason for the fundamental link between music and movement is that they are represented the same way in the brain, using a shared neural code. To test this, we created emotional music and animation stimuli that were precisely matched on all time-varying structural features. Participants viewed these stimuli while undergoing fMRI of the brain. Using representational similarity analysis (Kriegeskorte & Kievit, 2013), we show that a single model of stimulus features and emotion content fit activity in both auditory and visual brain areas, providing evidence that these regions share a neural code. Further, this code was used in posterior superior temporal cortex during both audition and vision. Across all regions, the shared code represented both prototypical and mixed emotions (e.g., Happy–Sad). Finally, exploratory analysis revealed that stimulus features and emotion content were represented in early visual areas even when stimuli were presented auditorily. This evidence for a shared neural code is consistent with an adaptive signaling account of emotion perception, where perceivers specifically adapted to perceive cross-sensory redundancy accrue an evolutionary advantage.


2016 ◽  
Vol 371 (1705) ◽  
pp. 20150351 ◽  
Author(s):  
Per M. Knutsen ◽  
Celine Mateo ◽  
David Kleinfeld

The ability to form an accurate map of sensory input to the brain is an essential aspect of interpreting functional brain signals. Here, we consider the somatotopic map of vibrissa-based touch in the primary somatosensory (vS1) cortex of mice. The vibrissae are represented by a Manhattan-like grid of columnar structures that are separated by inter-digitating septa. The development, dynamics and plasticity of this organization is widely used as a model system. Yet, the exact anatomical position of this organization within the vS1 cortex varies between individual mice. Targeting of a particular column in vivo therefore requires prior mapping of the activated cortical region, for instance by imaging the evoked intrinsic optical signal (eIOS) during vibrissa stimulation. Here, we describe a procedure for constructing a complete somatotopic map of the vibrissa representation in the vS1 cortex using eIOS. This enables precise targeting of individual cortical columns . We found, using C57BL/6 mice, that although the precise location of the columnar field varies between animals, the relative spatial arrangement of the columns is highly preserved. This finding enables us to construct a canonical somatotopic map of the vibrissae in the vS1 cortex. In particular, the position of any column, in absolute anatomical coordinates, can be established with near certainty when the functional representations in the vS1 cortex for as few as two vibrissae have been mapped with eIOS. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.


2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


1999 ◽  
Vol 13 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Laurence Casini ◽  
Françoise Macar ◽  
Marie-Hélène Giard

Abstract The experiment reported here was aimed at determining whether the level of brain activity can be related to performance in trained subjects. Two tasks were compared: a temporal and a linguistic task. An array of four letters appeared on a screen. In the temporal task, subjects had to decide whether the letters remained on the screen for a short or a long duration as learned in a practice phase. In the linguistic task, they had to determine whether the four letters could form a word or not (anagram task). These tasks allowed us to compare the level of brain activity obtained in correct and incorrect responses. The current density measures recorded over prefrontal areas showed a relationship between the performance and the level of activity in the temporal task only. The level of activity obtained with correct responses was lower than that obtained with incorrect responses. This suggests that a good temporal performance could be the result of an efficacious, but economic, information-processing mechanism in the brain. In addition, the absence of this relation in the anagram task results in the question of whether this relation is specific to the processing of sensory information only.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 286
Author(s):  
Soheil Keshmiri

Recent decades have witnessed a substantial progress in the utilization of brain activity for the identification of stress digital markers. In particular, the success of entropic measures for this purpose is very appealing, considering (1) their suitability for capturing both linear and non-linear characteristics of brain activity recordings and (2) their direct association with the brain signal variability. These findings rely on external stimuli to induce the brain stress response. On the other hand, research suggests that the use of different types of experimentally induced psychological and physical stressors could potentially yield differential impacts on the brain response to stress and therefore should be dissociated from more general patterns. The present study takes a step toward addressing this issue by introducing conditional entropy (CE) as a potential electroencephalography (EEG)-based resting-state digital marker of stress. For this purpose, we use the resting-state multi-channel EEG recordings of 20 individuals whose responses to stress-related questionnaires show significantly higher and lower level of stress. Through the application of representational similarity analysis (RSA) and K-nearest-neighbor (KNN) classification, we verify the potential that the use of CE can offer to the solution concept of finding an effective digital marker for stress.


Author(s):  
Hans Liljenström

AbstractWhat is the role of consciousness in volition and decision-making? Are our actions fully determined by brain activity preceding our decisions to act, or can consciousness instead affect the brain activity leading to action? This has been much debated in philosophy, but also in science since the famous experiments by Libet in the 1980s, where the current most common interpretation is that conscious free will is an illusion. It seems that the brain knows, up to several seconds in advance what “you” decide to do. These studies have, however, been criticized, and alternative interpretations of the experiments can be given, some of which are discussed in this paper. In an attempt to elucidate the processes involved in decision-making (DM), as an essential part of volition, we have developed a computational model of relevant brain structures and their neurodynamics. While DM is a complex process, we have particularly focused on the amygdala and orbitofrontal cortex (OFC) for its emotional, and the lateral prefrontal cortex (LPFC) for its cognitive aspects. In this paper, we present a stochastic population model representing the neural information processing of DM. Simulation results seem to confirm the notion that if decisions have to be made fast, emotional processes and aspects dominate, while rational processes are more time consuming and may result in a delayed decision. Finally, some limitations of current science and computational modeling will be discussed, hinting at a future development of science, where consciousness and free will may add to chance and necessity as explanation for what happens in the world.


2021 ◽  
pp. 1-10
Author(s):  
Shahul Mujib Kamal ◽  
Norazryana Mat Dawi ◽  
Hamidreza Namazi

BACKGROUND: Walking like many other actions of a human is controlled by the brain through the nervous system. In fact, if a problem occurs in our brain, we cannot walk correctly. Therefore, the analysis of the coupling of brain activity and walking is very important especially in rehabilitation science. The complexity of movement paths is one of the factors that affect human walking. For instance, if we walk on a path that is more complex, our brain activity increases to adjust our movements. OBJECTIVE: This study for the first time analyzed the coupling of walking paths and brain reaction from the information point of view. METHODS: We analyzed the Shannon entropy for electroencephalography (EEG) signals versus the walking paths in order to relate their information contents. RESULTS: According to the results, walking on a path that contains more information causes more information in EEG signals. A strong correlation (p= 0.9999) was observed between the information contents of EEG signals and walking paths. Our method of analysis can also be used to investigate the relation among other physiological signals of a human and walking paths, which has great benefits in rehabilitation science.


Sign in / Sign up

Export Citation Format

Share Document