scholarly journals Low dimensional nanostructures of fast ion conducting lithium nitride

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nuria Tapia-Ruiz ◽  
Alexandra G. Gordon ◽  
Catherine M. Jewell ◽  
Hannah K. Edwards ◽  
Charles W. Dunnill ◽  
...  

Abstract As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride possesses remarkable properties and is a model material for energy applications involving the transport of lithium ions. Following a materials design principle drawn from broad structural analogies to hexagonal graphene and boron nitride, we demonstrate that such low dimensional structures can also be formed from an s-block element and nitrogen. Both one- and two-dimensional nanostructures of lithium nitride, Li3N, can be grown despite the absence of an equivalent van der Waals gap. Lithium-ion diffusion is enhanced compared to the bulk compound, yielding materials with exceptional ionic mobility. Li3N demonstrates the conceptual assembly of ionic inorganic nanostructures from monolayers without the requirement of a van der Waals gap. Computational studies reveal an electronic structure mediated by the number of Li-N layers, with a transition from a bulk narrow-bandgap semiconductor to a metal at the nanoscale.

Author(s):  
Benjamin J. Morgan

The ability of some solid materials to exhibit exceptionally high ionic conductivities has been known since the observations of Michael Faraday in the nineteenth century (Faraday M. 1838 Phil. Trans. R. Soc. 90 ), yet a detailed understanding of the atomic-scale physics that gives rise to this behaviour remains an open scientific question. This theme issue collects articles from researchers working on this question of understanding fast-ion conduction in solid electrolytes. The issue opens with two perspectives, both of which discuss concepts that have been proposed as schema for understanding fast-ion conduction. The first perspective presents an overview of a series of experimental NMR studies, and uses this to frame discussion of the roles of ion–ion interactions, crystallographic disorder, low-dimensionality of crystal structures, and fast interfacial diffusion in nanocomposite materials. The second perspective reviews computational studies of halides, oxides, sulfides and hydroborates, focussing on the concept of frustration and how this can manifest in different forms in various fast-ion conductors. The issue also includes five primary research articles, each of which presents a detailed analysis of the factors that affect microscopic ion-diffusion in specific fast-ion conducting solid electrolytes, including oxide-ion conductors Gd 2 Zr 2 O 7 and Bi 4 V 2 O 11 , lithium-ion conductors Li 6 PS 5 Br and Li 3 OCl , and the prototypical fluoride-ion conductor β - PbF 2 . This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’.


2015 ◽  
Vol 17 (25) ◽  
pp. 16494-16506 ◽  
Author(s):  
Hao Min Chen ◽  
Chen Maohua ◽  
Stefan Adams

Stabilities and migration barriers of argyrodite-type fast Li+ion-conducting solids and related compounds are systematically explored by computational methods.


2017 ◽  
Vol 46 (29) ◽  
pp. 9415-9419 ◽  
Author(s):  
Hany El-Shinawi ◽  
Edmund J. Cussen ◽  
Serena A. Corr

Fast ion conducting garnet materials have been identified as promising electrolytes for all solid-state batteries.


2017 ◽  
Author(s):  
Younghee Lee ◽  
Daniela M. Piper ◽  
Andrew S. Cavanagh ◽  
Matthias J. Young ◽  
Se-Hee Lee ◽  
...  

<div>Atomic layer deposition (ALD) of LiF and lithium ion conducting (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloys was developed using trimethylaluminum, lithium hexamethyldisilazide (LiHMDS) and hydrogen fluoride derived from HF-pyridine solution. ALD of LiF was studied using in situ quartz crystal microbalance (QCM) and in situ quadrupole mass spectrometer (QMS) at reaction temperatures between 125°C and 250°C. A mass gain per cycle of 12 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C and decreased at higher temperatures. QMS detected FSi(CH<sub>3</sub>)<sub>3</sub> as a reaction byproduct instead of HMDS at 150°C. LiF ALD showed self-limiting behavior. Ex situ measurements using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) showed a growth rate of 0.5-0.6 Å/cycle, in good agreement with the in situ QCM measurements.</div><div>ALD of lithium ion conducting (AlF3)(LiF)x alloys was also demonstrated using in situ QCM and in situ QMS at reaction temperatures at 150°C A mass gain per sequence of 22 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C. Ex situ measurements using XRR and SE showed a linear growth rate of 0.9 Å/sequence, in good agreement with the in situ QCM measurements. Stoichiometry between AlF<sub>3</sub> and LiF by QCM experiment was calculated to 1:2.8. XPS showed LiF film consist of lithium and fluorine. XPS also showed (AlF<sub>3</sub>)(LiF)x alloy consists of aluminum, lithium and fluorine. Carbon, oxygen, and nitrogen impurities were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film. These atomic ratios were consistent with the calculation from QCM experiments. Finally, lithium ion conductivity (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film was measured as σ = 7.5 × 10<sup>-6</sup> S/cm.</div>


2021 ◽  
Vol 494 ◽  
pp. 229712
Author(s):  
Yue-E Huang ◽  
Weilin Lin ◽  
Chenguang Shi ◽  
Li Li ◽  
Kaiqing Fan ◽  
...  

Author(s):  
Yongcheng Xiao ◽  
Jing Liu ◽  
Dong He ◽  
Songbo Chen ◽  
Weimin Peng ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1183
Author(s):  
Shujahadeen B. Aziz ◽  
Ahmad S. F. M. Asnawi ◽  
Mohd Fakhrul Zamani Kadir ◽  
Saad M. Alshehri ◽  
Tansir Ahamad ◽  
...  

In this work, a pair of biopolymer materials has been used to prepare high ion-conducting electrolytes for energy storage application (ESA). The chitosan:methylcellulose (CS:MC) blend was selected as a host for the ammonium thiocyanate NH4SCN dopant salt. Three different concentrations of glycerol was successfully incorporated as a plasticizer into the CS–MC–NH4SCN electrolyte system. The structural, electrical, and ion transport properties were investigated. The highest conductivity of 2.29 × 10−4 S cm−1 is recorded for the electrolyte incorporated 42 wt.% of plasticizer. The complexation and interaction of polymer electrolyte components are studied using the FTIR spectra. The deconvolution (DVN) of FTIR peaks as a sensitive method was used to calculate ion transport parameters. The percentage of free ions is found to influence the transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D). All electrolytes in this work obey the non-Debye behavior. The highest conductivity electrolyte exhibits the dominancy of ions, where the ionic transference number, tion value of (0.976) is near to infinity with a voltage of breakdown of 2.11 V. The fabricated electrochemical double-layer capacitor (EDLC) achieves the highest specific capacitance, Cs of 98.08 F/g at 10 mV/s by using the cyclic voltammetry (CV) technique.


1994 ◽  
Vol 340 ◽  
Author(s):  
L. E. Rumaner ◽  
F.S. Ohuchi

ABSTRACTAlthough heteroepitaxy of lattice-matched and lattice-mismatched materials leading to artificially structured materials has resulted in impressive performance in various electronics devices, material combinations are usually limited by lattice matching constraints. A new concept for fabricating material systems using the atomically abrupt and low dimensional nature of layered materials, called van der Waals epitaxy (VDWE), has been developed. GaSe (Eg = 2.1 eV) has been deposited on the three dimensional surface of GaAs (111) using a molecular beam deposition system. GaSe was evaporated from a single Knudsen source, impinging on a heated substrate. Even with a lattice mismatch of 6% between the substrate and the growing film, good quality single crystal films were grown as determined by RHEED. The films have further been analyzed using a complementary combination of XPS and X-ray reflectivity.


2019 ◽  
Vol 48 (2) ◽  
pp. 130-132 ◽  
Author(s):  
Kan Hatakeyama-Sato ◽  
Toshiki Tezuka ◽  
Yoshinori Nishikitani ◽  
Hiroyuki Nishide ◽  
Kenichi Oyaizu

Sign in / Sign up

Export Citation Format

Share Document