scholarly journals TET2 directs mammary luminal cell differentiation and endocrine response

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mi Ran Kim ◽  
Meng-Ju Wu ◽  
Yingsheng Zhang ◽  
Jer-Yen Yang ◽  
Chun Ju Chang

Abstract Epigenetic regulation plays an important role in governing stem cell fate and tumorigenesis. Lost expression of a key DNA demethylation enzyme TET2 is associated with human cancers and has been linked to stem cell traits in vitro; however, whether and how TET2 regulates mammary stem cell fate and mammary tumorigenesis in vivo remains to be determined. Here, using our recently established mammary specific Tet2 deletion mouse model, the data reveals that TET2 plays a pivotal role in mammary gland development and luminal lineage commitment. We show that TET2 and FOXP1 form a chromatin complex that mediates demethylation of ESR1, GATA3, and FOXA1, three key genes that are known to coordinately orchestrate mammary luminal lineage specification and endocrine response, and also are often silenced by DNA methylation in aggressive breast cancers. Furthermore, Tet2 deletion-PyMT breast cancer mouse model exhibits enhanced mammary tumor development with deficient ERα expression that confers tamoxifen resistance in vivo. As a result, this study elucidates a role for TET2 in governing luminal cell differentiation and endocrine response that underlies breast cancer resistance to anti-estrogen treatments.

Author(s):  
Somyot Chirasatitsin ◽  
Priyalakshmi Viswanathan ◽  
Giuseppe Battaglia ◽  
Adam J. Engler

Adhesions are important cell structures required to transduce a variety of chemical and mechanics signals from outside-in and vice versa, all of which regulate cell behaviors, including stem cell differentiation (1). Though most biomaterials are coated with an adhesive ligand to promote adhesion, they do not often have a uniform distribution that does not match the heterogeneously adhesive extracellular matrix (ECM) in vivo (2). We have previously shown that diblock copolymer (DBC) mixtures undergo interface-confined de-mixing to form nanodomins of one copolymer in another (3). Here we demonstrate how diblock copolymer mixtures can be made into foams with nanodomains to better recapitulate native ECM adhesion regions and influence cell adhesion.


Science ◽  
2019 ◽  
Vol 366 (6466) ◽  
pp. 734-738 ◽  
Author(s):  
Antoine de Morree ◽  
Julian D. D. Klein ◽  
Qiang Gan ◽  
Jean Farup ◽  
Andoni Urtasun ◽  
...  

Adult stem cells are essential for tissue homeostasis. In skeletal muscle, muscle stem cells (MuSCs) reside in a quiescent state, but little is known about the mechanisms that control homeostatic turnover. Here we show that, in mice, the variation in MuSC activation rate among different muscles (for example, limb versus diaphragm muscles) is determined by the levels of the transcription factor Pax3. We further show that Pax3 levels are controlled by alternative polyadenylation of its transcript, which is regulated by the small nucleolar RNA U1. Isoforms of the Pax3 messenger RNA that differ in their 3′ untranslated regions are differentially susceptible to regulation by microRNA miR206, which results in varying levels of the Pax3 protein in vivo. These findings highlight a previously unrecognized mechanism of the homeostatic regulation of stem cell fate by multiple RNA species.


2013 ◽  
Vol 45 (23) ◽  
pp. 1123-1135 ◽  
Author(s):  
David A. Brafman

Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.


2006 ◽  
Vol 56 (5) ◽  
pp. 1001-1010 ◽  
Author(s):  
Chris Heyn ◽  
John A. Ronald ◽  
Soha S. Ramadan ◽  
Jonatan A. Snir ◽  
Andrea M. Barry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document