scholarly journals TARM1 contributes to development of arthritis by activating dendritic cells through recognition of collagens

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rikio Yabe ◽  
Soo-Hyun Chung ◽  
Masanori A. Murayama ◽  
Sachiko Kubo ◽  
Kenji Shimizu ◽  
...  

AbstractTARM1 is a member of the leukocyte immunoglobulin-like receptor family and stimulates macrophages and neutrophils in vitro by associating with FcRγ. However, the function of this molecule in the regulation of the immune system is unclear. Here, we show that Tarm1 expression is elevated in the joints of rheumatoid arthritis mouse models, and the development of collagen-induced arthritis (CIA) is suppressed in Tarm1–/– mice. T cell priming against type 2 collagen is suppressed in Tarm1–/– mice and antigen-presenting ability of GM-CSF-induced dendritic cells (GM-DCs) from Tarm1–/– mouse bone marrow cells is impaired. We show that type 2 collagen is a functional ligand for TARM1 on GM-DCs and promotes DC maturation. Furthermore, soluble TARM1-Fc and TARM1-Flag inhibit DC maturation and administration of TARM1-Fc blocks the progression of CIA in mice. These results indicate that TARM1 is an important stimulating factor of dendritic cell maturation and could be a good target for the treatment of autoimmune diseases.

1998 ◽  
Vol 6 (1-2) ◽  
pp. 25-39 ◽  
Author(s):  
Robert Gieseler ◽  
Dirk Heise ◽  
Afsaneh Soruri ◽  
Peter Schwartz ◽  
J. Hinrich Peters

Representing the most potent antigen-presenting cells, dendritic cells (DC) can now be generated from human blood monocytes. We recently presented a novel protocol employing GM-CSF, IL-4, and IFN-γto differentiate monocyte-derived DCin vitro. Here, such cells are characterized in detail. Cells in culture exhibited both dendritic and veiled morphologies, the former being adherent and the latter suspended. Phenotypically, they were CD1a-/dim, CD11a+, CD11b++, CD11c+, CD14dim/-, CD16a-/dim, CD18+, CD32dim/-, CD33+, CD40+, CD45R0+, CD50+, CD54+, CD64-/dim, CD68+, CD71+, CD80dim, CD86+/++, MHC class I++/+++HLA-DR++/+++HLA-DP+, and HLA-DQ+. The DC stimulated a strong allogeneic T-cell response, and further evidence for their autologous antigen-specific stimulation is discussed. Although resembling a mature CD 11c+CD45R0+blood DC subset identified earlier, their differentiation in the presence of the Thl and Th2 cytokines IFN-γand IL-4 indicates that these DC may conform to mature mucosal DC.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 10556-10556
Author(s):  
J. Rosenblatt ◽  
R. Stone ◽  
C. Lenahan ◽  
Z. Wu ◽  
B. Vasir ◽  
...  

10556 Background: Dendritic cells (DC) play a key role in the development of tumor specific immune responses. Dendritic cells differentiated from leukemic blasts (LDC) are being explored as a tumor vaccine in AML. We examined the phenotypic and functional characteristics of LDC, the phenotypic characteristics of native DC in AML patients, and the effect of leukemic blasts on the phenotype of DC generated from normal donors. Methods: Leukemia blasts were isolated from peripheral blood of 24 patients with AML. LDC were generated by culturing blasts in the presence of GM-CSF, IL-4 and TNFa for 7 days. The phenotype of circulating DC1 (CD11C+/lin-) and DC2 (CD123+/ lin-) in AML patients was assessed by multichannel FACS analysis. To assess the effect of blasts on DC maturation, adherent mononuclear cells were isolated from normal donors, combined with leukemia cells in a 10:1 ratio, and cultured with GM-CSF, IL-4, and TNFa. Results: LDC demonstrate only modest expression of the costimulatory molecules CD80 and CD86 (mean expression 10% and 32%) and poorly express the maturation marker CD83 (mean expression 4%). Interferon gamma production by autologous T cells was not higher after stimulation with LDC than with blasts. LDC stimlation resulted in a 2 fold increase in both CD4+/CD25+/CD69+ (activated) and CD4+/CD25+/FOXP3+ (regulatory) T cells. Given the inability of leukemia progenitors to differentiate into phenotypically mature DC, we assessed whether leukemia cells directly inhibit differentiation of DC from normal progenitors. Expression of costimulatory molecules was decreased in DC differentiated in the presence of blasts. Mean expression of CD80, CD83, and CD86 was 16%, 2%, 83% and 49%, 10%, 99% for DCs generated in the presence or absence blasts respectively. Phenotypic characteristics of native DC in patients with AML were examined. In 3 experiments, a predominance of DC2 was seen (ratio DC2/DC1 5), and both DC1 and DC2 poorly expressed CD83 (mean expression 9% DC1, 0.9% DC2). Conclusions: LDC have phenotypic and functional deficiencies, limiting their efficacy as a tumor vaccine. Contact with leukemic blasts may inhibit DC maturation in vitro and in vivo, which may contribute to the lack of effective antitumor immunity in AML patients. No significant financial relationships to disclose.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Ludmila V. Sakhno ◽  
Ekaterina Ya. Shevela ◽  
Marina A. Tikhonova ◽  
Sergey D. Nikonov ◽  
Alexandr A. Ostanin ◽  
...  

The phenotype and functional properties of antigen-presenting cells (APC), that is, circulating monocytes and generatedin vitromacrophages and dendritic cells, were investigated in the patients with pulmonary tuberculosis (TB) differing in lymphocyte reactivity toM. tuberculosisantigens (PPD-reactive versus PPD-anergic patients). We revealed the distinct impairments in patient APC functions. For example, the monocyte dysfunctions were displayed by low CD86 and HLA-DR expression, 2-fold increase in CD14+CD16+expression, the high numbers of IL-10-producing cells, and enhanced IL-10 and IL-6 production upon LPS-stimulation. The macrophages which werein vitrogenerated from peripheral blood monocytes under GM-CSF were characterized by Th1/Th2-balance shifting (downproduction of IFN-γcoupled with upproduction of IL-10) and by reducing of allostimulatory activity in mixed lymphocyte culture. The dendritic cells (generatedin vitrofrom peripheral blood monocytes upon GM-CSF + IFN-α) were characterized by impaired maturation/activation, a lower level of IFN-γproduction in conjunction with an enhanced capacity to produce IL-10 and IL-6, and a profound reduction of allostimulatory activity. The APC dysfunctions were found to be most prominent in PPD-anergic patients. The possible role of APC impairments in reducing the antigen-specific T-cell response toM. tuberculosiswas discussed.


2020 ◽  
Vol 21 (5) ◽  
pp. 1890
Author(s):  
Makoto Kubo ◽  
Ryuichi Nagashima ◽  
Mitsue Kurihara ◽  
Fumitaka Kawakami ◽  
Tatsunori Maekawa ◽  
...  

Leucine-rich repeat kinase 2 (LRRK2) is the causal molecule of familial Parkinson’s disease. Although the characteristics of LRRK2 have gradually been revealed, its true physiological functions remain unknown. LRRK2 is highly expressed in immune cells such as B2 cells and macrophages, suggesting that it plays important roles in the immune system. In the present study, we investigate the roles of LRRK2 in the immune functions of dendritic cells (DCs). Bone marrow-derived DCs from both C57BL/6 wild-type (WT) and LRRK2 knockout (KO) mice were induced by culture with granulocyte/macrophage-colony stimulating factor (GM/CSF) in vitro. We observed the differentiation of DCs, the phosphorylation of the transcriptional factors NF-κB, Erk1/2, and p-38 after lipopolysaccharide (LPS) stimulation and antigen-presenting ability by flow cytometry. We also analyzed the production of inflammatory cytokines by ELISA. During the observation period, there was no difference in DC differentiation between WT and LRRK2-KO mice. After LPS stimulation, phosphorylation of NF-κB was significantly increased in DCs from the KO mice. Large amounts of inflammatory cytokines were produced by DCs from KO mice after both stimulation with LPS and infection with Leishmania. CD4+ T-cells isolated from antigen-immunized mice proliferated to a significantly greater degree upon coculture with antigen-stimulated DCs from KO mice than upon coculture with DCs from WT mice. These results suggest that LRRK2 may play important roles in signal transduction and antigen presentation by DCs.


2019 ◽  
Vol 41 (1) ◽  
Author(s):  
Nguyen Thu Thuy ◽  
Nguyen Thi Xuan

IL-10 is an anti-inflammatory cytokine, participating in induction of immune tolerance and cell apoptotic death. Dendritic cells (DCs) is the most professional antigen-presenting cells among innate immune cells to exert generation and maintenance of immunological memory mediated through activation of T and B lymphocytes. The STAT signalling pathway plays a regulatory role of maturation and differentiation of immune cells. In this study, DCs were treated with inflammatory cytokines including TNF-a, INFg, IL-2 and IL-10 and subsequently examined the phosphorylation of STAT-1 and STAT-3, TNF-α concetration in cell suspension and the proportion of Annexin V+ and caspase 3+ cells. Methods used for this investigation include western blotting, flow cytometry and ELISA. DCs were derived from mouse bone marrow cells and cultured with GM-CSF for 8 days. As a result, IL-10, but not other cytokines enhanced the number of Annexin V+cells and caspase 3 activity in DCs. More importantly, IL-10 also increased the phosphorylation of STAT-1 as well as the release of TNF-α into cell suspension. In conclusion, activation of STAT-1 might relate to the cell apoptotic death and TNF-α sectetion in IL-10-treated DCs.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3708-3716 ◽  
Author(s):  
D.B. Fearnley ◽  
A.D. McLellan ◽  
S.I. Mannering ◽  
B.D. Hock ◽  
D.N.J. Hart

Abstract Dendritic cells (DC) are potent antigen-presenting cells (APC) with the capacity to stimulate a primary T lymphocyte immune response and are therefore of interest for potential immunotherapeutic applications. Freshly isolated DC or DC precursors may be preferable for studies of antigen uptake and the potential control of APC costimulator activity. In this report, we report that the monoclonal antibody CMRF-44 can be used to detect early DC differentiation. The majority of DC circulating in blood do not express any known DC lineage specific markers, but can be identified by CMRF-44 labeling after a brief period of in vitro culture. The sequential acquisition of DC activation antigens allows the identification of two stages of DC maturation/activation. Cytokines, especially granulocyte-macrophage colony-stimulating factor (GM-CSF ) and tumor necrosis factor (TNF )α, enhance both phases of this process, whereas CD40-ligand trimer preferentially enhances the final DC maturation to a fully mature, activated phenotype. DC positively selected using CMRF-44 possess potent allostimulatory activity and are efficient at the uptake, processing, and presentation of soluble antigens for both primary and secondary immune responses. CMRF-44+ DC are also more potent than other APC types at restimulation of a chronic myeloid leukemia peptide specific T-cell clone. The use of a purified population of freshly isolated DC may be advantageous in attempts to initiate, maintain, and direct immune responses for immunotherapeutic applications.


2008 ◽  
Vol 83 (4) ◽  
pp. 1555-1562 ◽  
Author(s):  
Helen M. Rowe ◽  
Luciene Lopes ◽  
Najmeeyah Brown ◽  
Sofia Efklidou ◽  
Timothy Smallie ◽  
...  

ABSTRACT Lentiviral vectors deliver antigens to dendritic cells (DCs) in vivo, but they do not trigger DC maturation. We therefore expressed a viral protein that constitutively activates NF-κB, vFLIP from Kaposi's sarcoma-associated herpesvirus (KSHV), in a lentivector to mature DCs. vFLIP activated NF-κB in mouse bone marrow-derived DCs in vitro and matured these DCs to a similar extent as lipopolysaccharide; costimulatory markers CD80, CD86, CD40, and ICAM-1 were upregulated and tumor necrosis factor alpha and interleukin-12 secreted. The vFLIP-expressing lentivector also matured DCs in vivo. When we coexpressed vFLIP in a lentivector with ovalbumin (Ova), we found an increased immune response to Ova; up to 10 times more Ova-specific CD8+ T cells secreting gamma interferon were detected in the spleens of vFLIP_Ova-immunized mice than in the spleens of mice immunized with GFP_Ova. Furthermore, this increased CD8+ T-cell response correlated with improved tumor-free survival in a tumor therapy model. A single immunization with vFLIP_Ova also reduced the parasite load when mice were challenged with OVA-Leishmania donovani. In conclusion, vFLIP from KSHV is a DC activator, maturing DCs in vitro and in vivo. This demonstrates that NF-κB activation is sufficient to induce many aspects of DC maturation and that expression of a constitutive NF-κB activator can improve the efficacy of a vaccine vector.


2019 ◽  
Vol 41 (1) ◽  
Author(s):  
Xuan Thi Nguyen ◽  
Phuong Thi Hoai Bach ◽  
Thuy Thu Nguyen

IL-10 is an anti-inflammatory cytokine, participating in induction of immune tolerance and cell apoptotic death. Dendritic cells (DCs) is the most professional antigen-presenting cells among innate immune cells to exert generation and maintenance of immunological memory mediated through activation of T and B lymphocytes. The STAT signalling pathway plays a regulatory role of maturation and differentiation of immune cells. In this study, DCs were treated with inflammatory cytokines including TNF-, INF, IL-2 and IL-10 and subsequently examined the phosphorylation of STAT-1 and STAT-3, TNF-α concetration in cell suspension and percents of Annexin V+ and caspase 3+ cells. Methods used for this investigation include western blotting, flow cytometry and ELISA. DCs were derived from mouse bone marrow cells and cultured with GM-CSF for 8 days. As a result, IL-10, but not other cytokines enhanced the number of Annexin V+cells and caspase 3 activity in DCs. More importantly, IL-10 also increased the phosphorylation of STAT-1 as well as the release of TNF-α into cell suspension. In conclusion, activation of STAT-1 might relate to the cell apoptotic death and TNF-α sectetion in IL-10-treated DCs.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3708-3716 ◽  
Author(s):  
D.B. Fearnley ◽  
A.D. McLellan ◽  
S.I. Mannering ◽  
B.D. Hock ◽  
D.N.J. Hart

Dendritic cells (DC) are potent antigen-presenting cells (APC) with the capacity to stimulate a primary T lymphocyte immune response and are therefore of interest for potential immunotherapeutic applications. Freshly isolated DC or DC precursors may be preferable for studies of antigen uptake and the potential control of APC costimulator activity. In this report, we report that the monoclonal antibody CMRF-44 can be used to detect early DC differentiation. The majority of DC circulating in blood do not express any known DC lineage specific markers, but can be identified by CMRF-44 labeling after a brief period of in vitro culture. The sequential acquisition of DC activation antigens allows the identification of two stages of DC maturation/activation. Cytokines, especially granulocyte-macrophage colony-stimulating factor (GM-CSF ) and tumor necrosis factor (TNF )α, enhance both phases of this process, whereas CD40-ligand trimer preferentially enhances the final DC maturation to a fully mature, activated phenotype. DC positively selected using CMRF-44 possess potent allostimulatory activity and are efficient at the uptake, processing, and presentation of soluble antigens for both primary and secondary immune responses. CMRF-44+ DC are also more potent than other APC types at restimulation of a chronic myeloid leukemia peptide specific T-cell clone. The use of a purified population of freshly isolated DC may be advantageous in attempts to initiate, maintain, and direct immune responses for immunotherapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document