scholarly journals Somatic deficiency causes reproductive parasitism in a fungus

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexey A. Grum-Grzhimaylo ◽  
Eric Bastiaans ◽  
Joost van den Heuvel ◽  
Cristina Berenguer Millanes ◽  
Alfons J. M. Debets ◽  
...  

AbstractSome multicellular organisms can fuse because mergers potentially provide mutual benefits. However, experimental evolution in the fungus Neurospora crassa has demonstrated that free fusion of mycelia favours cheater lineages, but the mechanism and evolutionary dynamics of this exploitation are unknown. Here we show, paradoxically, that all convergently evolved cheater lineages have similar fusion deficiencies. These mutants are unable to initiate fusion but retain access to wild-type mycelia that fuse with them. This asymmetry reduces cheater-mutant contributions to somatic substrate-bound hyphal networks, but increases representation of their nuclei in the aerial reproductive hyphae. Cheaters only benefit when relatively rare and likely impose genetic load reminiscent of germline senescence. We show that the consequences of somatic fusion can be unequally distributed among fusion partners, with the passive non-fusing partner profiting more. We discuss how our findings may relate to the extensive variation in fusion frequency of fungi found in nature.

2020 ◽  
Author(s):  
Alexey A. Grum-Grzhimaylo ◽  
Eric Bastiaans ◽  
Joost van den Heuvel ◽  
Cristina Berenguer Millanes ◽  
Alfons J.M. Debets ◽  
...  

AbstractSome multicellular organisms can fuse because mergers potentially provide mutual benefits. However, experimental evolution in the fungus Neurospora crassa has demonstrated that free fusion of mycelia favours cheater lineages, but the mechanism and evolutionary dynamics of dishonest exploitation are unknown. Here we show, paradoxically, that all convergently evolved cheater lineages have similar fusion deficiencies. These mutants are unable to initiate fusion but retain access to wild-type mycelia that fuse with them. This asymmetry reduces cheater-mutant contributions to somatic substrate-bound hyphal networks, but increases representation of their nuclei in the aerial reproductive hyphae. Cheaters only benefit when relatively rare and likely impose genetic load reminiscent of germline senescence. We show that the consequences of somatic fusion can be unequally distributed among fusion partners, with the passive non-fusing partner profiting more. We discuss how our findings may relate to the extensive variation in fusion frequency of fungi found in nature.


2018 ◽  
Author(s):  
Jingxian Liu ◽  
Jackson Champer ◽  
Chen Liu ◽  
Joan Chung ◽  
Riona Reeves ◽  
...  

AbstractEstimating fitness differences between allelic variants is a central goal of experimental evolution. Current methods for inferring selection from allele frequency time series typically assume that evolutionary dynamics at the locus of interest can be described by a fixed selection coefficient. However, fitness is an aggregate of several components including mating success, fecundity, and viability, and distinguishing between these components could be critical in many scenarios. Here we develop a flexible maximum likelihood framework that can disentangle different components of fitness and estimate them individually in males and females from genotype frequency data. As a proof-of-principle, we apply our method to experimentally-evolved cage populations of Drosophila melanogaster, in which we tracked the relative frequencies of a loss-of-function and wild-type allele of yellow. This X-linked gene produces a recessive yellow phenotype when disrupted and is involved in male courtship ability. We find that the fitness costs of the yellow phenotype take the form of substantially reduced mating preference of wild-type females for yellow males, together with a modest reduction in the viability of yellow males and females. Our framework should be generally applicable to situations where it is important to quantify fitness components of specific genetic variants, including quantitative characterization of the population dynamics of CRISPR gene drives.


Author(s):  
Karen S. Howard ◽  
H. D. Braymer ◽  
M. D. Socolofsky ◽  
S. A. Milligan

The recently isolated cell wall mutant slime X of Neurospora crassa was prepared for ultrastructural and morphological comparison with the cell wall mutant slime. The purpose of this article is to discuss the methods of preparation for TEM and SEM observations, as well as to make a preliminary comparison of the two mutants.TEM: Cells of the slime mutant were prepared for thin sectioning by the method of Bigger, et al. Slime X cells were prepared in the same manner with the following two exceptions: the cells were embedded in 3% agar prior to fixation and the buffered solutions contained 5% sucrose throughout the procedure.SEM: Two methods were used to prepare mutant and wild type Neurospora for the SEM. First, single colonies of mutant cells and small areas of wild type hyphae were cut from solid media and fixed with OSO4 vapors similar to the procedure used by Harris, et al. with one alteration. The cell-containing agar blocks were dehydrated by immersion in 2,2-dimethoxypropane (DMP).


Genetics ◽  
1972 ◽  
Vol 72 (3) ◽  
pp. 411-417
Author(s):  
C W H Partridge ◽  
Mary E Case ◽  
Norman H Giles

ABSTRACT A color test has been developed for the selection and identification of mutants in Neurospora crassa, constitutive for the three normally inducible enzymes which convert quinate to protocatechuate. By this means seven such mutants have been recovered after ultra violet irradiation of wild type and have been shown to be allelic (or very closely linked) to the qa-1C mutants previously obtained by other means. Thus, the regulation of the synthesis of these three catabolic enzymes is indicated to be under the control of a single gene, qa-1+.


Genetics ◽  
1976 ◽  
Vol 82 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Jerry F Feldman ◽  
Marian N Hoyle

ABSTRACT A fourth mutant of Neurospora crassa, designated frq-4, has been isolated in which the period length of the circadian conidiation rhythm is shortened to 19.3 ± 0.3 hours. This mutant is tightly linked to the three previously isolated frq mutants, and all four map to the right arm of linkage group VII about 10 map units from the centromere. Complementation tests suggest, but do not prove, that all four mutations are allelic, since each of the four mutants is co-dominant with the frq  + allele—i.e., heterokaryons have period lengths intermediate between the mutant and wild-type—and since heterokaryons between pairs of mutants also have period lengths intermediate between those of the two mutants.


Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 107-117
Author(s):  
Qi Yang ◽  
Katherine A Borkovich

Abstract Heterotrimeric G proteins, consisting of α, β, and γ subunits, transduce environmental signals through coupling to plasma membrane-localized receptors. We previously reported that the filamentous fungus Neurospora crassa possesses a Gα protein, GNA-1, that is a member of the Gαi superfamily. Deletion of gna-1 leads to defects in apical extension, differentiation of asexual spores, sensitivity to hyperosmotic media, and female fertility. In addition, Δgna-1 strains have lower intracellular cAMP levels under conditions that promote morphological abnormalities. To further define the function of GNA-1 in signal transduction in N. crassa, we examined properties of strains with mutationally activated gna-1 alleles (R178C or Q204L) as the only source of GNA-1 protein. These mutations are predicted to inhibit the GTPase activity of GNA-1 and lead to constitutive signaling. In the sexual cycle, gna-1R178C and gna-1Q204L strains are female-fertile, but produce fewer and larger perithecia than wild type. During asexual development, gna-1R178C and gna-1Q204L strains elaborate abundant, long aerial hyphae, produce less conidia, and possess lower levels of carotenoid pigments in comparison to wild-type controls. Furthermore, gna-1R178C and gna-1Q204L strains are more sensitive to heat shock and exposure to hydrogen peroxide than wild-type strains, while Δgna-1 mutants are more resistant. In contrast to Δgna-1 mutants, gna-1R178C and gna-1Q204L strains have higher steady-state levels of cAMP than wild type. The results suggest that GNA-1 possesses several Gβγ-independent functions in N. crassa. We propose that GNA-1 mediates signal transduction pathway(s) that regulate aerial hyphae development and sensitivity to heat and oxidative stresses, possibly through modulation of cAMP levels.


Sign in / Sign up

Export Citation Format

Share Document