scholarly journals An optic to replace space and its application towards ultra-thin imaging systems

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Orad Reshef ◽  
Michael P. DelMastro ◽  
Katherine K. M. Bearne ◽  
Ali H. Alhulaymi ◽  
Lambert Giner ◽  
...  

AbstractCenturies of effort to improve imaging has focused on perfecting and combining lenses to obtain better optical performance and new functionalities. The arrival of nanotechnology has brought to this effort engineered surfaces called metalenses, which promise to make imaging devices more compact. However, unaddressed by this promise is the space between the lenses, which is crucial for image formation but takes up by far the most room in imaging systems. Here, we address this issue by presenting the concept of and experimentally demonstrating an optical ‘spaceplate’, an optic that effectively propagates light for a distance that can be considerably longer than the plate thickness. Such an optic would shrink future imaging systems, opening the possibility for ultra-thin monolithic cameras. More broadly, a spaceplate can be applied to miniaturize important devices that implicitly manipulate the spatial profile of light, for example, solar concentrators, collimators for light sources, integrated optical components, and spectrometers.

2010 ◽  
Vol 53 (3) ◽  
pp. 342-346 ◽  
Author(s):  
M. M. Vekshin ◽  
E. B. Khotnyanskaya ◽  
V. A. Nikitin ◽  
N. A. Yakovenko

1994 ◽  
Vol 158 ◽  
pp. 261-271 ◽  
Author(s):  
V. Coudé du Foresto

Integrated optical components (mostly single-mode fibers and couplers) can be used to achieve several functions that are needed in interferometry: coherent beam transportation and recombination, pathlength modulation and control for fringe tracking and double Fourier interferometry, spatial filtering of the wavefront and interferogram calibration. Their potential is assessed and the main problems encountered in their implementation are discussed: dispersion, polarization behavior, and especially starlight injection.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2460 ◽  
Author(s):  
Jiangtao Lv ◽  
Ming Zhou ◽  
Qiongchan Gu ◽  
Xiaoxiao Jiang ◽  
Yu Ying ◽  
...  

In recent years, the development of metamaterials and metasurfaces has drawn great attention, enabling many important practical applications. Focusing and lensing components are of extreme importance because of their significant potential practical applications in biological imaging, display, and nanolithography fabrication. Metafocusing devices using ultrathin structures (also known as metasurfaces) with superlensing performance are key building blocks for developing integrated optical components with ultrasmall dimensions. In this article, we review the metamaterial superlensing devices working in transmission mode from the perfect lens to two-dimensional metasurfaces and present their working principles. Then we summarize important practical applications of metasurfaces, such as plasmonic lithography, holography, and imaging. Different typical designs and their focusing performance are also discussed in detail.


2019 ◽  
Vol 9 (19) ◽  
pp. 4093 ◽  
Author(s):  
Santiago Royo ◽  
Maria Ballesta-Garcia

Lidar imaging systems are one of the hottest topics in the optronics industry. The need to sense the surroundings of every autonomous vehicle has pushed forward a race dedicated to deciding the final solution to be implemented. However, the diversity of state-of-the-art approaches to the solution brings a large uncertainty on the decision of the dominant final solution. Furthermore, the performance data of each approach often arise from different manufacturers and developers, which usually have some interest in the dispute. Within this paper, we intend to overcome the situation by providing an introductory, neutral overview of the technology linked to lidar imaging systems for autonomous vehicles, and its current state of development. We start with the main single-point measurement principles utilized, which then are combined with different imaging strategies, also described in the paper. An overview of the features of the light sources and photodetectors specific to lidar imaging systems most frequently used in practice is also presented. Finally, a brief section on pending issues for lidar development in autonomous vehicles has been included, in order to present some of the problems which still need to be solved before implementation may be considered as final. The reader is provided with a detailed bibliography containing both relevant books and state-of-the-art papers for further progress in the subject.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 405 ◽  
Author(s):  
Hui Yang ◽  
Yi Zhang ◽  
Sihui Chen ◽  
Rui Hao

Bioimaging generally indicates imaging techniques that acquire biological information from living forms. Among different imaging techniques, optical microscopy plays a predominant role in observing tissues, cells and biomolecules. Along with the fast development of microtechnology, developing miniaturized and integrated optical imaging systems has become essential to provide new imaging solutions for point-of-care applications. In this review, we will introduce the basic micro-optical components and their fabrication technologies first, and further emphasize the development of integrated optical systems for in vitro and in vivo bioimaging, respectively. We will conclude by giving our perspectives on micro-optical components for bioimaging applications in the near future.


Sign in / Sign up

Export Citation Format

Share Document