scholarly journals Tumor-associated hematopoietic stem and progenitor cells positively linked to glioblastoma progression

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
I-Na Lu ◽  
Celia Dobersalske ◽  
Laurèl Rauschenbach ◽  
Sarah Teuber-Hanselmann ◽  
Anita Steinbach ◽  
...  

AbstractBrain tumors are typically immunosuppressive and refractory to immunotherapies for reasons that remain poorly understood. The unbiased profiling of immune cell types in the tumor microenvironment may reveal immunologic networks affecting therapy and course of disease. Here we identify and validate the presence of hematopoietic stem and progenitor cells (HSPCs) within glioblastoma tissues. Furthermore, we demonstrate a positive link of tumor-associated HSPCs with malignant and immunosuppressive phenotypes. Compared to the medullary hematopoietic compartment, tumor-associated HSPCs contain a higher fraction of immunophenotypically and transcriptomically immature, CD38- cells, such as hematopoietic stem cells and multipotent progenitors, express genes related to glioblastoma progression and display signatures of active cell cycle phases. When cultured ex vivo, tumor-associated HSPCs form myeloid colonies, suggesting potential in situ myelopoiesis. In experimental models, HSPCs promote tumor cell proliferation, expression of the immune checkpoint PD-L1 and secretion of tumor promoting cytokines such as IL-6, IL-8 and CCL2, indicating concomitant support of both malignancy and immunosuppression. In patients, the amount of tumor-associated HSPCs in tumor tissues is prognostic for patient survival and correlates with immunosuppressive phenotypes. These findings identify an important element in the complex landscape of glioblastoma that may serve as a target for brain tumor immunotherapies.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Stefan Radtke ◽  
André Görgens ◽  
Symone Vitoriano da Conceição Castro ◽  
Lambros Kordelas ◽  
Angela Köninger ◽  
...  

Abstract Endothelial and mesenchymal stromal cells (ECs/MSCs) are crucial components of hematopoietic bone marrow stem cell niches. Both cell types appear to be required to support the maintenance and expansion of multipotent hematopoietic cells, i.e. hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs). With the aim to exploit niche cell properties for experimental and potential clinical applications, we analyzed the potential of primary ECs alone and in combination with MSCs to support the ex vivo expansion/maintenance of human hematopoietic stem and progenitor cells (HSPCs). Even though a massive expansion of total CD34+ HSPCs was observed, none of the tested culture conditions supported the expansion or maintenance of multipotent HSPCs. Instead, mainly lympho-myeloid primed progenitors (LMPPs) were expanded. Similarly, following transplantation into immunocompromised mice the percentage of multipotent HSPCs within the engrafted HSPC population was significantly decreased compared to the original graft. Consistent with the in vitro findings, a bias towards lympho-myeloid lineage potentials was observed. In our conditions, neither classical co-cultures of HSPCs with primary ECs or MSCs, even in combination, nor the xenograft environment in immunocompromised mice efficiently support the expansion of multipotent HSPCs. Instead, enhanced expansion and a consistent bias towards lympho-myeloid committed LMPPs were observed.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 534-534
Author(s):  
Mira Jeong ◽  
Xiangfan Huang ◽  
Xiaotian Zhang ◽  
Jianzhong Su ◽  
Muhammad S Shamim ◽  
...  

Abstract Higher order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. In order to understand how the DNA methylation is connected with nuclear architecture and can vary between cell types and during cell differentiation, we began to explore the 3D architecture of human hematopoietic stem and progenitor cells (HSPCs) by performing in situ Hi-C experiments at 5kb resolution. We found that large (~10kb) DNA methylation canyons can form long loops connecting anchor loci that may be dozens of megabases apart. These canyons also can form interchromosomal links (Fig.1a and 1b). We further confirmed these long-range interactions by performing 3D-FISH using two color fluorescent labeled probes that spanned the HOXA locus loop anchor (green) and the SP8 locus loop anchor (red), which are ~7MB apart (Fig. 1c). In order to begin to investigate mechanisms that may regulate these long loops and how they relate to commonly studied loops that are mediated by CTCF-extrusion, we examined their properties systematically. Interestingly, the anchors of long loops exhibited minimal enrichment for CTCF (1.04-fold), and, even when CTCF was bound, they did not obey the convergent rule. The data suggest these loops are formed by phase separation of the interacting loci to form a genomic subcompartment, rather than by CTCF-mediated extrusion. Next, we sought to determine whether other features correlated with these long loops. By aligning DNA methylation profiles with the Hi-C data, we observed that anchors often corresponded to regions of very low DNA methylation, and thus sought to analyze the relationship in detail. We found that the anchor position of the long loops had lower average DNA methylation levels than standard loop anchors and very often overlapped with DNA methylation canyons. Canyons are typically decorated with either active or repressive histone marks. We considered whether a particular group of canyons was associated with the long loops. Our findings further indicate that repressed regions marked by the polycomb-mediated histone modification H3K27me3 at DNA methylation canyons generally mediate the formation of canyon loops. Next, we considered whether the long loops associated with repressive grand canyons that we had annotated in HSPCs were present in other cell types. Using Aggregate Peak Analysis (APA), a computational strategy in which the Hi-C submatrices from the vicinity of multiple putative loops are superimposed, we examined 19 human cell types and 10 murine cell types in which loop-resolution Hi-C maps are available. Interestingly, unlike previously characterized genomic subcompartments, these long-range loops are only present in stem and progenitor cells, but not in differentiated cell types, such as T cells and erythroid progenitors (Fig. 1d). Further, we identified one particular loop anchor that lay at the anchor of a long loop and contained no apparent genes ("geneless" canyon, or "GLS"). The GLS harboring this anchor is 17 kb long, lies 1.4 Mb upstream of the HOXA1 gene, and forms long loops with a 28 kb grand canyon in the HOXA region. In order to understand the role of the GLS region in hematopoietic stem cells (HSCs), we deleted the GLS in HSPCs using Cas9-mediated editing and assayed the edited cells for their ability to form colonies. Strikingly, after deleting the GLS, the number of colonies and their size was greatly reduced in edited cells compared to control experiments using either random guide RNAs or electroporation only (Fig. 1e). After ex vivo culture, the overwhelming majority of GLS-knock out HSPCs acquired the marker CD38, indicating that they were differentiating. Similarly, HOXA gene expression, an indicator of HSPC function, was greatly diminished after GLS deletion compared to control cells. These data indicate that the GLS identified in our study is functionally associated with maintenance of the HSC state. Overall, our work reveals long-range interactions between H3K27me3-marked DNA methylation canyons comprising a novel microcompartment associated with cellular identity. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Gene Therapy ◽  
2021 ◽  
Author(s):  
Jeremy Epah ◽  
Richard Schäfer

AbstractHematopoietic stem cell transplantation (HSCT) is the therapeutic concept to cure the blood/immune system of patients suffering from malignancies, immunodeficiencies, red blood cell disorders, and inherited bone marrow failure syndromes. Yet, allogeneic HSCT bear considerable risks for the patient such as non-engraftment, or graft-versus host disease. Transplanting gene modified autologous HSCs is a promising approach not only for inherited blood/immune cell diseases, but also for the acquired immunodeficiency syndrome. However, there is emerging evidence for substantial heterogeneity of HSCs in situ as well as ex vivo that is also observed after HSCT. Thus, HSC gene modification concepts are suggested to consider that different blood disorders affect specific hematopoietic cell types. We will discuss the relevance of HSC heterogeneity for the development and manufacture of gene therapies and in exemplary diseases with a specific emphasis on the key target HSC types myeloid-biased, lymphoid-biased, and balanced HSCs.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6083-6090 ◽  
Author(s):  
Ann Dahlberg ◽  
Colleen Delaney ◽  
Irwin D. Bernstein

AbstractDespite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood–derived stem cell. Finally, we discuss some of the challenges still facing this field.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4612-4621 ◽  
Author(s):  
M.A. Dao ◽  
K. Hashino ◽  
I. Kato ◽  
J.A. Nolta

Abstract Recent reports have indicated that there is poor engraftment from hematopoietic stem cells (HSC) that have traversed cell cycle ex vivo. However, inducing cells to cycle in culture is critical to the fields of ex vivo stem cell expansion and retroviral-mediated gene therapy. Through the use of a xenograft model, the current data shows that human hematopoietic stem and progenitor cells can traverse M phase ex vivo, integrate retroviral vectors, engraft, and sustain long-term hematopoiesis only if they have had the opportunity to engage their integrin receptors to fibronectin during the culture period. If cultured in suspension under the same conditions, transduction is undetectable and the long-term multilineage regenerative capacity of the primitive cells is severely diminished.


Cytotherapy ◽  
2016 ◽  
Vol 18 (12) ◽  
pp. 1543-1547 ◽  
Author(s):  
Pascale Duchez ◽  
Laura Rodriguez ◽  
Jean Chevaleyre ◽  
Philippe Brunet De La Grange ◽  
Zoran Ivanovic

2018 ◽  
Vol 80 (3) ◽  
Author(s):  
Chan Chin Yi ◽  
Zariyantey Abd Hamid ◽  
Izatus Shima Taib ◽  
Tan Hui Yee ◽  
Muhd Khairul Akmal Wak Harto ◽  
...  

Hematopoietic stem and progenitor cells (HSPCs) are exposed to oxidative damage acquired during ex vivo expansion which affects their therapeutic potency. Efforts to overcome this limitation includes the use of antioxidants. The effects of N-Acetyl-Cysteine (NAC) supplementation for 48 hours on maintenance of ex vivo HSPCs was investigated by examining the cell viability at concentrations of 0.125 µM, 0.25 µM, 0.5 µM, 1.0 µM and 2.0 µM, followed by clonogenicity and oxidative status assessments of lineage-committed progenitors (myeloid, erythroid and pre-B lymphoid) at selected NAC concentrations (0.25 µM, 0.5 µM, 2.0 µM). NAC supplementation significantly (p< 0.05) enhanced viability of HSPC at 0.25 µM, 0.5 µM, 2.0 µM.  The clonogenicity of each progenitor was not affected as no significant changes of Colony Forming Units (CFUs) counts was noted between NAC-supplemented group than control. NAC showed no significant effects on reactive oxygen species (ROS), glutathione (GSH) and superoxide dismutase (SOD) levels of respective progenitors as compared to control. Conclusively, NAC shows potential property as antioxidant supplement for ex vivo maintenance of HSPCs by promoting survivability and maintaining clonogenicity.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 811
Author(s):  
Pranav Oberoi ◽  
Kathrina Kamenjarin ◽  
Jose Francisco Villena Ossa ◽  
Barbara Uherek ◽  
Halvard Bönig ◽  
...  

Obtaining sufficient numbers of functional natural killer (NK) cells is crucial for the success of NK-cell-based adoptive immunotherapies. While expansion from peripheral blood (PB) is the current method of choice, ex vivo generation of NK cells from hematopoietic stem and progenitor cells (HSCs) may constitute an attractive alternative. Thereby, HSCs mobilized into peripheral blood (PB-CD34+) represent a valuable starting material, but the rather poor and donor-dependent differentiation of isolated PB-CD34+ cells into NK cells observed in earlier studies still represents a major hurdle. Here, we report a refined approach based on ex vivo culture of PB-CD34+ cells with optimized cytokine cocktails that reliably generates functionally mature NK cells, as assessed by analyzing NK-cell-associated surface markers and cytotoxicity. To further enhance NK cell expansion, we generated K562 feeder cells co-expressing 4-1BB ligand and membrane-anchored IL-15 and IL-21. Co-culture of PB-derived NK cells and NK cells that were ex-vivo-differentiated from HSCs with these feeder cells dramatically improved NK cell expansion, and fully compensated for donor-to-donor variability observed during only cytokine-based propagation. Our findings suggest mobilized PB-CD34+ cells expanded and differentiated according to this two-step protocol as a promising source for the generation of allogeneic NK cells for adoptive cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document