scholarly journals Off-the-shelf proximity biotinylation for interaction proteomics

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Irene Santos-Barriopedro ◽  
Guido van Mierlo ◽  
Michiel Vermeulen

AbstractProximity biotinylation workflows typically require CRISPR-based genetic manipulation of target cells. To overcome this bottleneck, we fused the TurboID proximity biotinylation enzyme to Protein A. Upon target cell permeabilization, the ProtA-Turbo enzyme can be targeted to proteins or post-translational modifications of interest using bait-specific antibodies. Addition of biotin then triggers bait-proximal protein biotinylation. Biotinylated proteins can subsequently be enriched from crude lysates and identified by mass spectrometry. We demonstrate this workflow by targeting Emerin, H3K9me3 and BRG1. Amongst the main findings, our experiments reveal that the essential protein FLYWCH1 interacts with a subset of H3K9me3-marked (peri)centromeres in human cells. The ProtA-Turbo enzyme represents an off-the-shelf proximity biotinylation enzyme that facilitates proximity biotinylation experiments in primary cells and can be used to understand how proteins cooperate in vivo and how this contributes to cellular homeostasis and disease.

2017 ◽  
Author(s):  
Philippe E. Mangeot ◽  
Valérie Risson ◽  
Floriane Fusil ◽  
Aline Marnef ◽  
Emilie Laurent ◽  
...  

AbstractProgrammable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Using engineered murine leukemia virus-like particles loaded with Cas9/sgRNA ribonucleoproteins (“Nanoblades”), we were able to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades were also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for “all-in-one” homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.


1988 ◽  
Vol 18 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Gabriela Moţa ◽  
Marinela Mǎrgineanu ◽  
Mariana Nicolae ◽  
Alexandru Bancu ◽  
Ioan Moraru

2000 ◽  
Vol 74 (21) ◽  
pp. 9895-9902 ◽  
Author(s):  
Jean-Claude Twizere ◽  
Pierre Kerkhofs ◽  
Arsène Burny ◽  
Daniel Portetelle ◽  
Richard Kettmann ◽  
...  

ABSTRACT Bovine leukemia virus (BLV) Tax protein, a transcriptional activator of viral expression, is essential for viral replication in vivo. Tax is believed to be involved in leukemogenesis because of its second function, immortalization of primary cells in vitro. These activities of Tax can be dissociated on the basis of point mutations within specific regions of the protein. For example, mutation of the phosphorylation sites at serines 106 and 293 abrogates immortalization potential in vitro but maintains transcriptional activity. This type of mutant is thus particularly useful for unraveling the role of Tax immortalization activity during leukemogenesis independently of viral replication. In this report, we describe the biological properties of BLV recombinant proviruses mutated in the Tax phosphorylation sites (BLVTax106+293). Titration of the proviral loads by semiquantitative PCR revealed that the BLV mutants propagated at wild-type levels in vivo. Furthermore, two animals (sheep 480 and 296) infected with BLVTax106+293 developed leukemia or lymphosarcoma after 16 and 36 months, respectively. These periods of time are within the normal range of latencies preceding the onset of pathogenesis induced by wild-type viruses. The phenotype of the mutant-infected cells was characteristic of a B lymphocyte (immunoglobulin M positive) expressing CD11b and CD5 (except at the final stage for the latter marker), a pattern that is typical of wild-type virus-infected target cells. Interestingly, the transformed B lymphocytes from sheep 480 also coexpressed the CD8 marker, a phenotype rarely observed in tumor biopsies from chronic lymphocytic leukemia patients. Finally, direct sequencing of the tax gene demonstrated that the leukemic cells did not harbor revertant proviruses. We conclude that viruses expressing a Tax mutant unable to transform primary cells in culture are still pathogenic in the sheep animal model. Our data thus provide a clear example of the discordant conclusions that can be drawn from in vitro immortalization assays and in vivo experiments. These observations could be of interest for other systems, such as the related human T-cell leukemia virus type 1, which currently lack animal models allowing the study of the leukemogenic process.


1988 ◽  
Vol 18 (3) ◽  
pp. 237
Author(s):  
Gabriela Mota ◽  
Marinela Mǎrgineanu ◽  
Mariana Nicolae ◽  
Alexandru Bancu ◽  
Ioan Moraru

2016 ◽  
Vol 283 (1832) ◽  
pp. 20160593 ◽  
Author(s):  
Timothy P. Cleland ◽  
Elena R. Schroeter ◽  
Robert S. Feranec ◽  
Deepak Vashishth

Vertebrate fossils have been collected for hundreds of years and are stored in museum collections around the world. These remains provide a readily available resource to search for preserved proteins; however, the vast majority of palaeoproteomic studies have focused on relatively recently collected bones with a well-known handling history. Here, we characterize proteins from the nasal turbinates of the first Castoroides ohioensis skull ever discovered. Collected in 1845, this is the oldest museum-curated specimen characterized using palaeoproteomic tools. Our mass spectrometry analysis detected many collagen I peptides, a peptide from haemoglobin beta, and in vivo and diagenetic post-translational modifications. Additionally, the identified collagen I sequences provide enough resolution to place C. ohioensis within Rodentia. This study illustrates the utility of archived museum specimens for both the recovery of preserved proteins and phylogenetic analyses.


2000 ◽  
Vol 74 (11) ◽  
pp. 5016-5023 ◽  
Author(s):  
Shirley Lee ◽  
Cheryl K. Lapham ◽  
Hong Chen ◽  
Lisa King ◽  
Jody Manischewitz ◽  
...  

ABSTRACT The chemokine receptors CCR5 and CXCR4 were found to function in vivo as the principal coreceptors for M-tropic and T-tropic human immunodeficiency virus (HIV) strains, respectively. Since many primary cells express multiple chemokine receptors, it was important to determine if the efficiency of virus-cell fusion is influenced not only by the presence of the appropriate coreceptor (CXCR4 or CCR5) but also by the levels of other coreceptors expressed by the same target cells. We found that in cells with low to medium surface CD4 density, coexpression of CCR5 and CXCR4 resulted in a significant reduction in the fusion with CXCR4 domain (X4) envelope-expressing cells and in their susceptibility to infection with X4 viruses. The inhibition could be reversed either by increasing the density of surface CD4 or by antibodies against the N terminus and second extracellular domains of CCR5. In addition, treatment of macrophages with a combination of anti-CCR5 antibodies or β-chemokines increased their fusion with X4 envelope-expressing cells. Conversely, overexpression of CXCR4 compared with CCR5 inhibited CCR5-dependent HIV-dependent fusion in 3T3.CD4.401 cells. Thus, coreceptor competition for association with CD4 may occur in vivo and is likely to have important implications for the course of HIV type 1 infection, as well as for the outcome of coreceptor-targeted therapies.


2004 ◽  
Vol 279 (44) ◽  
pp. 45503-45511 ◽  
Author(s):  
Carolyn J. Schultz ◽  
Kris L. Ferguson ◽  
Jelle Lahnstein ◽  
Antony Bacic

We have developed a method for separating the deglycosylated protein/peptide backbones of the small arabinogalactan (AG)-peptides from the larger classical arabinogalactan-proteins (AGPs). AGPs are an important class of plant proteoglycans implicated in plant growth and development. Separation of AG-peptides enabled us to identify eight of 12 AG-peptides fromArabidopsis thalianapredicted from genomic sequences. Of the remaining four, two have low abundance based on expressed sequence tag databases and the other two are only present in pollen (At3g20865) or flowers (At3g57690) and therefore would not be detected in our analysis. Characterization of AG-peptides was performed using matrix-assisted laser desorption ionization-time of flight mass spectrometry and tandem mass spectrometry protein sequencing. These data provide (i) experimental evidence that AG-peptides are processedin vivofor the addition of a glycosylphosphatidylinositol (GPI) anchor, (ii) cleavage site information for both the endoplasmic reticulum secretion signal and the GPI-anchor signal for eight of the 12 AG-peptides, and (iii) experimental evidence that the Gly-Pro motif is hydroxylatedin vivo. Furthermore, we show that AtAGP16 is GPI-anchored despite its unusually long hydrophobic C-terminal GPI-signal sequence. Prior to this work, the GPI-anchor cleavage site for only two plant proteins, NaAGP1 fromNicotiana alataand PcAGP1 fromPyrus communis, had been determined experimentally. Characterization of the post-translational modifications of AG-peptides contributes toward obtaining the complete primary structure of this class of biologically important plant proteoglycans and provides a greater understanding of post-translational modifications of plant proteins.


2010 ◽  
Vol 78 (5) ◽  
pp. 1850-1858 ◽  
Author(s):  
Bereket Zekarias ◽  
Seema Mattoo ◽  
Carolyn Worby ◽  
Jason Lehmann ◽  
Ricardo F. Rosenbusch ◽  
...  

ABSTRACT Newly recognized Fic family virulence proteins may be important in many bacterial pathogens. To relate cellular mechanisms to pathogenesis and immune protection, we studied the cytotoxicity of the Histophilus somni immunoglobulin-binding protein A (IbpA) direct repeat 2 Fic domain (DR2/Fic) for natural host target cells. Live virulent IbpA-producing H. somni strain 2336, a cell-free culture supernatant (CCS) of this strain, or recombinant DR2/Fic (rDR2/Fic) caused dramatic retraction and rounding of bovine alveolar type 2 (BAT2) epithelial cells. IbpA-deficient H. somni strain 129Pt and a Fic motif His298Ala mutant rDR2/Fic protein were not cytotoxic. The cellular mechanism of DR2/Fic cytotoxicity was demonstrated by incubation of BAT2 cell lysates with strain 2336 CCS or rDR2/Fic in the presence of [α-32P]ATP, which resulted in adenylylation of Rho GTPases and cytoskeletal disruption. Since IbpA is not secreted by type III or type IV secretion systems, we determined whether DR2/Fic entered the host cytoplasm to access its Rho GTPase targets. Although H. somni did not invade BAT2 cells, DR2/Fic was internalized by cells treated with H. somni, CCS, or the rDR2/Fic protein, as shown by confocal immunomicroscopy. Transwell bacterial migration assays showed that large numbers of strain 2336 bacteria migrated between retracted BAT2 cells, but IbpA-deficient strain 129Pt did not cross a monolayer unless the monolayer was pretreated with strain 2336 CCS or rDR2/Fic protein. Antibody to rDR2/Fic or passively protective convalescent-phase serum blocked IbpA-mediated cytotoxicity and inhibited H. somni transmigration across BAT2 monolayers, confirming the role of DR2/Fic in pathogenesis and corresponding to the results for in vivo protection in previous animal studies.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 660
Author(s):  
Melissa B. Uccellini ◽  
Sadaf Aslam ◽  
Sean T. H. Liu ◽  
Fahmida Alam ◽  
Adolfo García-Sastre

Fc-dependent effector functions are an important determinant of the in vivo potency of therapeutic antibodies. Effector function is determined by the combination of FcRs bound by the antibody and the cell expressing the relevant FcRs, leading to antibody-dependent cellular cytotoxicity (ADCC). A number of ADCC assays have been developed; however, they suffer from limitations in terms of throughput, reproducibility, and in vivo relevance. Existing assays measure NK cell-mediated ADCC activity; however, studies suggest that macrophages mediate the effector function of many antibodies in vivo. Here, we report the development of a macrophage-based ADCC assay that relies on luciferase expression in target cells as a measure of live cell number. In the presence of primary mouse macrophages and specific antibodies, loss of luciferase signal serves as a surrogate for ADCC-dependent killing. We show that the assay functions for a variety of mouse and human isotypes with a model antigen/antibody complex in agreement with the known effector function of the isotypes. We also use this assay to measure the activity of a number of influenza-specific antibodies and show that the assay correlates well with the known in vivo effector functions of these antibodies.


Sign in / Sign up

Export Citation Format

Share Document