scholarly journals Extent of myosin penetration within the actin cortex regulates cell surface mechanics

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Binh An Truong Quang ◽  
Ruby Peters ◽  
Davide A. D. Cassani ◽  
Priyamvada Chugh ◽  
Andrew G. Clark ◽  
...  

AbstractIn animal cells, shape is mostly determined by the actomyosin cortex, a thin cytoskeletal network underlying the plasma membrane. Myosin motors generate tension in the cortex, and tension gradients result in cellular deformations. As such, many cell morphogenesis studies have focused on the mechanisms controlling myosin activity and recruitment to the cortex. Here, we demonstrate using super-resolution microscopy that myosin does not always overlap with actin at the cortex, but remains restricted towards the cytoplasm in cells with low cortex tension. We propose that this restricted penetration results from steric hindrance, as myosin minifilaments are considerably larger than the cortical actin meshsize. We identify myosin activity and actin network architecture as key regulators of myosin penetration into the cortex, and show that increasing myosin penetration increases cortical tension. Our study reveals that the spatial coordination of myosin and actin at the cortex regulates cell surface mechanics, and unveils an important mechanism whereby myosin size controls its action by limiting minifilament penetration into the cortical actin network. More generally, our findings suggest that protein size could regulate function in dense cytoskeletal structures.

2006 ◽  
Vol 175 (5) ◽  
pp. 687-692 ◽  
Author(s):  
Ewa Paluch ◽  
Jasper van der Gucht ◽  
Cécile Sykes

The shape of animal cells is, to a large extent, determined by the cortical actin network that underlies the cell membrane. Because of the presence of myosin motors, the actin cortex is under tension, and local relaxation of this tension can result in cortical flows that lead to deformation and polarization of the cell. Cortex relaxation is often regulated by polarizing signals, but the cortex can also rupture and relax spontaneously. A similar tension-induced polarization is observed in actin gels growing around beads, and we propose that a common mechanism governs actin gel rupture in both systems.


2020 ◽  
Vol 295 (15) ◽  
pp. 5036-5050 ◽  
Author(s):  
Tess A. Stanly ◽  
Marco Fritzsche ◽  
Suneale Banerji ◽  
Dilip Shrestha ◽  
Falk Schneider ◽  
...  

Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) mediates the docking and entry of dendritic cells to lymphatic vessels through selective adhesion to its ligand hyaluronan in the leukocyte surface glycocalyx. To bind hyaluronan efficiently, LYVE-1 must undergo surface clustering, a process that is induced efficiently by the large cross-linked assemblages of glycosaminoglycan present within leukocyte pericellular matrices but is induced poorly by the shorter polymer alone. These properties suggested that LYVE-1 may have limited mobility in the endothelial plasma membrane, but no biophysical investigation of these parameters has been carried out to date. Here, using super-resolution fluorescence microscopy and spectroscopy combined with biochemical analyses of the receptor in primary lymphatic endothelial cells, we provide the first evidence that LYVE-1 dynamics are indeed restricted by the submembranous actin network. We show that actin disruption not only increases LYVE-1 lateral diffusion but also enhances hyaluronan-binding activity. However, unlike the related leukocyte HA receptor CD44, which uses ERM and ankyrin motifs within its cytoplasmic tail to bind actin, LYVE-1 displays little if any direct interaction with actin, as determined by co-immunoprecipitation. Instead, as shown by super-resolution stimulated emission depletion microscopy in combination with fluorescence correlation spectroscopy, LYVE-1 diffusion is restricted by transient entrapment within submembranous actin corrals. These results point to an actin-mediated constraint on LYVE-1 clustering in lymphatic endothelium that tunes the receptor for selective engagement with hyaluronan assemblages in the glycocalyx that are large enough to cross-bridge the corral-bound LYVE-1 molecules and thereby facilitate leukocyte adhesion and transmigration.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Felix Spira ◽  
Sara Cuylen-Haering ◽  
Shalin Mehta ◽  
Matthias Samwer ◽  
Anne Reversat ◽  
...  

The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings.


2002 ◽  
Vol 13 (9) ◽  
pp. 3268-3280 ◽  
Author(s):  
Katarina Hattula ◽  
Johanna Furuhjelm ◽  
Airi Arffman ◽  
Johan Peränen

The mechanisms mediating polarized delivery of vesicles to cell surface domains are poorly understood in animal cells. We have previously shown that expression of Rab8 promotes the formation of new cell surface domains through reorganization of actin and microtubules. To unravel the function of Rab8, we used the yeast two-hybrid system to search for potential Rab8-specific activators. We identified a coil-coiled protein (Rabin8), homologous to the rat Rabin3 that stimulated nucleotide exchange on Rab8 but not on Rab3A and Rab5. Furthermore, we show that rat Rabin3 has exchange activity on Rab8 but not on Rab3A, supporting the view that rat Rabin3 is the rat equivalent of human Rabin8. Rabin8 localized to the cortical actin and expression of Rabin8 resulted in remodeling of actin and the formation of polarized cell surface domains. Activation of PKC by phorbol esters enhanced translocation of both Rabin8 and Rab8-specific vesicles to the outer edge of lamellipodial structures. Moreover, coexpression of Rabin8 with dominant negative Rab8 (T22N) redistributes Rabin8 from cortical actin to Rab8-specific vesicles and promotes their polarized transport to cell protrusions. The C-terminal region of Rabin8 plays an essential role in this transport. We propose that Rabin8 is a Rab8-specific activator that is connected to processes that mediate polarized membrane traffic to dynamic cell surface structures.


Author(s):  
Robert M. Glaeser ◽  
Thea B. Scott

The carbon-replica technique can be used to obtain information about cell-surface structure that cannot ordinarily be obtained by thin-section techniques. Mammalian erythrocytes have been studied by the replica technique and they appear to be characterized by a pebbly or “plaqued“ surface texture. The characteristic “particle” diameter is about 200 Å to 400 Å. We have now extended our observations on cell-surface structure to chicken and frog erythrocytes, which possess a broad range of cellular functions, and to normal rat lymphocytes and mouse ascites tumor cells, which are capable of cell division. In these experiments fresh cells were washed in Eagle's Minimum Essential Medium Salt Solution (for suspension cultures) and one volume of a 10% cell suspension was added to one volume of 2% OsO4 or 5% gluteraldehyde in 0.067 M phosphate buffer, pH 7.3. Carbon replicas were obtained by a technique similar to that employed by Glaeser et al. Figure 1 shows an electron micrograph of a carbon replica made from a chicken erythrocyte, and Figure 2 shows an enlarged portion of the same cell.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bushra Yusuf ◽  
Ilya Mukovozov ◽  
Sajedabanu Patel ◽  
Yi-Wei Huang ◽  
Guang Ying Liu ◽  
...  

AbstractAtherosclerosis is characterized by retention of modified lipoproteins, especially oxidized low density lipoprotein (oxLDL) within the sub-endothelial space of affected blood vessels. Recruited monocyte-derived and tissue-resident macrophages subsequently ingest oxLDL by binding and internalizing oxLDL via scavenger receptors, particularly CD36. The secreted neurorepellent, Slit2, acting through its transmembrane receptor, Roundabout-1 (Robo-1), was previously shown to inhibit recruitment of monocytes into nascent atherosclerotic lesions. The effects of Slit2 on oxLDL uptake by macrophages have not been explored. We report here that Slit2 inhibits uptake of oxLDL by human and murine macrophages, and the resulting formation of foam cells, in a Rac1-dependent and CD36-dependent manner. Exposure of macrophages to Slit2 prevented binding of oxLDL to the surface of cells. Using super-resolution microscopy, we observed that exposure of macrophages to Slit2 induced profound cytoskeletal remodeling with formation of a thick ring of cortical actin within which clusters of CD36 could not aggregate, thereby attenuating binding of oxLDL to the surface of cells. By inhibiting recruitment of monocytes into early atherosclerotic lesions, and the subsequent binding and internalization of oxLDL by macrophages, Slit2 could represent a potent new tool to combat individual steps that collectively result in progression of atherosclerosis.


1990 ◽  
Vol 111 (5) ◽  
pp. 1905-1911 ◽  
Author(s):  
L G Cao ◽  
Y L Wang

The contractile ring in dividing animal cells is formed primarily through the reorganization of existing actin filaments (Cao, L.-G., and Y.-L. Wang. 1990. J. Cell Biol. 110:1089-1096), but it is not clear whether the process involves a random recruitment of diffusible actin filaments from the cytoplasm, or a directional movement of cortically associated filaments toward the equator. We have studied this question by observing the distribution of actin filaments that have been labeled with fluorescent phalloidin and microinjected into dividing normal rat kidney (NRK) cells. The labeled filaments are present primarily in the cytoplasm during prometaphase and early metaphase, but become associated extensively with the cell cortex 10-15 min before the onset of anaphase. This process is manifested both as an increase in cortical fluorescence intensity and as movements of discrete aggregates of actin filaments toward the cortex. The concentration of actin fluorescence in the equatorial region, accompanied by a decrease of fluorescence in polar regions, is detected 2-3 min after the onset of anaphase. By directly tracing the distribution of aggregates of labeled actin filaments, we are able to detect, during anaphase and telophase, movements of cortical actin filaments toward the equator at an average rate of 1.0 micron/min. Our results, combined with previous observations, suggest that the organization of actin filaments during cytokinesis probably involves an association of cytoplasmic filaments with the cortex, a movement of cortical filaments toward the cleavage furrow, and a dissociation of filaments from the equatorial cortex.


The Analyst ◽  
2014 ◽  
Vol 139 (12) ◽  
pp. 3174-3178 ◽  
Author(s):  
Ian L. Gunsolus ◽  
Dehong Hu ◽  
Cosmin Mihai ◽  
Samuel E. Lohse ◽  
Chang-soo Lee ◽  
...  

Author(s):  
Anish R. Roy ◽  
Wei Zhang ◽  
Zeinab Jahed ◽  
Ching-Ting Tsai ◽  
Bianxiao Cui ◽  
...  

1985 ◽  
Vol 5 (6) ◽  
pp. 1442-1448
Author(s):  
G A Adams ◽  
J K Rose

The membrane-spanning domain of the vesicular stomatitis virus glycoprotein (G protein) consists of a continuous stretch of 20 uncharged and mostly hydrophobic amino acids. We examined the effects of two mutations which change the amino acid sequence in this domain. These mutations were generated by oligonucleotide-directed mutagenesis of a cDNA clone encoding the G protein, and the altered G proteins were then expressed in animal cells. Replacement of an isoleucine residue in the center of this domain with a strongly polar but uncharged amino acid (glutamine) had no effect on membrane anchoring or transport of the protein to the cell surface. Replacement of this same isoleucine residue with a charged amino acid (arginine) generated a G protein that still spanned intracellular membranes but was not transported efficiently to the cell surface. The protein accumulated in the Golgi region in about 50% of the cells, and about 20% of the cells had detectable protein levels in a punctate pattern on the cell surface. In the remaining cells the protein accumulated in a vesicular pattern throughout the cytoplasm. Models which might explain the abnormal behavior of this protein are discussed.


Sign in / Sign up

Export Citation Format

Share Document