scholarly journals Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Robert M. Cox ◽  
Josef D. Wolf ◽  
Carolin M. Lieber ◽  
Julien Sourimant ◽  
Michelle J. Lin ◽  
...  

AbstractRemdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma γ, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.

2021 ◽  
Author(s):  
Richard Plemper ◽  
Robert Cox ◽  
Josef Wolf ◽  
Carolin Lieber ◽  
Julien Sourimant ◽  
...  

Abstract Remdesivir is the only small-molecule antiviral approved to date for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterized the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibited SARS-CoV-2, including variants of concern (VoC) in cell culture. Oral GS-621763 was efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduced SARS-CoV-2 burden to near-undetectable levels. When dosed therapeutically against VoC P.1 gamma (γ), oral GS-621763 blocked virus replication and prevented transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadzeya Marozkina ◽  
Laura Smith ◽  
Yi Zhao ◽  
Joe Zein ◽  
James F. Chmiel ◽  
...  

AbstractEndothelial hemoglobin (Hb)α regulates endothelial nitric oxide synthase (eNOS) biochemistry. We hypothesized that Hb could also be expressed and biochemically active in the ciliated human airway epithelium. Primary human airway epithelial cells, cultured at air–liquid interface (ALI), were obtained by clinical airway brushings or from explanted lungs. Human airway Hb mRNA data were from publically available databases; or from RT-PCR. Hb proteins were identified by immunoprecipitation, immunoblot, immunohistochemistry, immunofluorescence and liquid chromatography- mass spectrometry. Viral vectors were used to alter Hbβ expression. Heme and nitrogen oxides were measured colorimetrically. Hb mRNA was expressed in human ciliated epithelial cells. Heme proteins (Hbα, β, and δ) were detected in ALI cultures by several methods. Higher levels of airway epithelial Hbβ gene expression were associated with lower FEV1 in asthma. Both Hbβ knockdown and overexpression affected cell morphology. Hbβ and eNOS were apically colocalized. Binding heme with CO decreased extracellular accumulation of nitrogen oxides. Human airway epithelial cells express Hb. Higher levels of Hbβ gene expression were associated with airflow obstruction. Hbβ and eNOS were colocalized in ciliated cells, and heme affected oxidation of the NOS product. Epithelial Hb expression may be relevant to human airways diseases.


2006 ◽  
Vol 453 (6) ◽  
pp. 777-785 ◽  
Author(s):  
Peter Steen Pedersen ◽  
Thomas Hartig Braunstein ◽  
Anders Jørgensen ◽  
Per Leganger Larsen ◽  
Niels-Henrik Holstein-Rathlou ◽  
...  

2007 ◽  
Vol 75 (5) ◽  
pp. 382-392 ◽  
Author(s):  
Ludovic Wiszniewski ◽  
Javier Sanz ◽  
Isabelle Scerri ◽  
Elena Gasparotto ◽  
Tecla Dudez ◽  
...  

2011 ◽  
Vol 186 (4) ◽  
pp. 2482-2494 ◽  
Author(s):  
Jinshui Fan ◽  
Faoud T. Ishmael ◽  
Xi Fang ◽  
Allen Myers ◽  
Chris Cheadle ◽  
...  

2004 ◽  
Vol 30 (2) ◽  
pp. 83-96 ◽  
Author(s):  
Olaf Pinkenburg ◽  
Claus Vogelmeier ◽  
Sascha Bossow ◽  
Wolfgang J. Neubert ◽  
Raimund B. Lutz ◽  
...  

2010 ◽  
Vol 84 (22) ◽  
pp. 12069-12074 ◽  
Author(s):  
Yan Liu ◽  
Robert A. Childs ◽  
Tatyana Matrosovich ◽  
Stephen Wharton ◽  
Angelina S. Palma ◽  
...  

ABSTRACT Mutations in the receptor-binding site of the hemagglutinin of pandemic influenza A(H1N1) 2009 viruses have been detected sporadically. An Asp222Gly (D222G) substitution has been associated with severe or fatal disease. Here we show that 222G variants infected a higher proportion of ciliated cells in cultures of human airway epithelium than did viruses with 222D or 222E, which targeted mainly nonciliated cells. Carbohydrate microarray analyses showed that 222G variants bind a broader range of α2-3-linked sialyl receptor sequences of a type expressed on ciliated bronchial epithelial cells and on epithelia within the lung. These features of 222G mutants may contribute to exacerbation of disease.


1996 ◽  
Vol 154 (3) ◽  
pp. 758-763 ◽  
Author(s):  
J E Boers ◽  
J L den Brok ◽  
J Koudstaal ◽  
J W Arends ◽  
F B Thunnissen

Sign in / Sign up

Export Citation Format

Share Document