scholarly journals G-protein-coupled receptor P2Y10 facilitates chemokine-induced CD4 T cell migration through autocrine/paracrine mediators

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Malarvizhi Gurusamy ◽  
Denise Tischner ◽  
Jingchen Shao ◽  
Stephan Klatt ◽  
Sven Zukunft ◽  
...  

AbstractG-protein-coupled receptors (GPCRs), especially chemokine receptors, play a central role in the regulation of T cell migration. Various GPCRs are upregulated in activated CD4 T cells, including P2Y10, a putative lysophospholipid receptor that is officially still considered an orphan GPCR, i.e., a receptor with unknown endogenous ligand. Here we show that in mice lacking P2Y10 in the CD4 T cell compartment, the severity of experimental autoimmune encephalomyelitis and cutaneous contact hypersensitivity is reduced. P2Y10-deficient CD4 T cells show normal activation, proliferation and differentiation, but reduced chemokine-induced migration, polarization, and RhoA activation upon in vitro stimulation. Mechanistically, CD4 T cells release the putative P2Y10 ligands lysophosphatidylserine and ATP upon chemokine exposure, and these mediators induce P2Y10-dependent RhoA activation in an autocrine/paracrine fashion. ATP degradation impairs RhoA activation and migration in control CD4 T cells, but not in P2Y10-deficient CD4 T cells. Importantly, the P2Y10 pathway appears to be conserved in human T cells. Taken together, P2Y10 mediates RhoA activation in CD4 T cells in response to auto-/paracrine-acting mediators such as LysoPS and ATP, thereby facilitating chemokine-induced migration and, consecutively, T cell-mediated diseases.

2019 ◽  
Vol 203 (12) ◽  
pp. 3237-3246
Author(s):  
Dalia E. Gaddis ◽  
Lindsey E. Padgett ◽  
Runpei Wu ◽  
Catherine C. Hedrick

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3746-3746
Author(s):  
Carina A Bäuerlein ◽  
Simone S Riedel ◽  
Brede Christian ◽  
Ana-Laura Jordán Garrote ◽  
Agnes Birner ◽  
...  

Abstract Abstract 3746 Acute graft-versus-host disease (aGvHD) is an immune syndrome after allogeneic hematopoietic cell transplantation (allo-HCT) caused by alloreactive donor T cells that attack the gastrointestinal tract, liver and skin. Thus, early T cell migration patterns to these organs could provide first cues for the onset of aGvHD. Hence, a unique surface marker profile of donor T cells at early time points after allo-HCT may be an indicator for patients at risk of aGVHD. Therefore, we analyzed the course of donor T cell activation, proliferation and homing in a clinical relevant murine MHC minor mismatch (miHAg) allo-HCT model to define critical time points and marker profiles for the detection of alloreactive T cells. Luciferase-labeled C57Bl/6 (H-2b) T cells plus bone marrow cells were transplanted into conditioned (8 Gy) MHC major mismatched Balb/c (H-2d) or miHAg Balb/b (H-2b) recipients. Donor T cell migration was visualized by in vivo bioluminescence imaging (BLI) and cells were characterized by multiparameter flow cytometry for 30 consecutive days after allo-HCT. GVHD scoring was performed by histopathology. Donor T cells proliferated exclusively in secondary lymphoid organs until day+3 (initiation phase) before migrating via the peripheral blood into target organs (effector phase). This occured in both models, MHC major mismatch and miHAg allo-HCT, which resulted in hyper-acute (starting at day+6) or acute GVHD (starting at day+21), respectively. In the hyper-acute scenario one wave of T cell migration starting at day+4 sufficed to cause lethal aGVHD. We detected a 4000-fold increase in CD4 and a 1500-fold increase in CD8 donor T cell numbers in the peripheral blood between day+3 and day+6 in this model. In contrast, in the more clinical relevant miHAg allo-HCT model we found 3 waves of T cell migration with peaks at days +6, +11 and +15 after allo-HCT. In the peripheral blood CD4 T cells increased 20-fold, CD8 T cells 50-fold between day+3 and day+6, but more than 40-fold (CD4) and 400-fold (CD8) between day+3 and day+11. After the third peak on day+15 a period followed when we could only detect very few migrating donor T cells in the peripheral blood before aGvHD became clinically apparent on day+21. Next, we asked whether we could identify alloreactive T cells by testing a large panel of surface markers at the defined migration peaks. Indeed, allogeneic T cells upregulated certain homing receptors at these peaks (e.g. at day+11: α4β7 integrin: 27% of CD4 T cells, 3.4×104/ml, 60% of CD8 T cells, 1.6×105/ml; P-selectin ligand: 28% of CD4 T cells, 3.5×104/ml, 35% of CD8 T cells, 9.1×104/ml). In contrast, syngeneic transplanted mice only showed a constant low expression level of those receptors (e.g. at day+11: α4β7 integrin: 20% of CD4 T cells, 9.6×103/ml, 5% of CD8 T cells, 3.1×103/ml; P-selectin ligand: 17% of CD4 T cells, 8.5×103/ml, 10% of CD8 T cells, 6.6×103/ml). However, other markers such as CD44 could be found on more than 80% of all donor T cells in allogeneic or syngeneic recipients. Our results in this clinical relevant mouse model show accelerating waves of T cell migration consistent with an enhancing feedback loop model of aGvHD pathogenesis. The homing receptor expression profile of donor T cells correlated with critical migration waves and clearly differed between mice with or without aGvHD. The assessment of critical time points frame a diagnostic window for a potential predictive test based on the dynamic change of the T cell homing receptor profile after allo-HCT. This preclinical study now awaits to be evaluated in patients undergoing allo-HCT. Disclosures: No relevant conflicts of interest to declare.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Melissa A Lopes Pinheiro ◽  
Alwin Kamermans ◽  
Juan J Garcia-Vallejo ◽  
Bert van het Hof ◽  
Laura Wierts ◽  
...  

Trafficking of myelin-reactive CD4+ T-cells across the brain endothelium, an essential step in the pathogenesis of multiple sclerosis (MS), is suggested to be an antigen-specific process, yet which cells provide this signal is unknown. Here we provide direct evidence that under inflammatory conditions, brain endothelial cells (BECs) stimulate the migration of myelin-reactive CD4+ T-cells by acting as non-professional antigen presenting cells through the processing and presentation of myelin-derived antigens in MHC-II. Inflamed BECs internalized myelin, which was routed to endo-lysosomal compartment for processing in a time-dependent manner. Moreover, myelin/MHC-II complexes on inflamed BECs stimulated the trans-endothelial migration of myelin-reactive Th1 and Th17 2D2 cells, while control antigen loaded BECs did not stimulate T-cell migration. Furthermore, blocking the interaction between myelin/MHC-II complexes and myelin-reactive T-cells prevented T-cell transmigration. These results demonstrate that endothelial cells derived from the brain are capable of enhancing antigen-specific T cell recruitment.


2013 ◽  
Vol 305 (10) ◽  
pp. L693-L701 ◽  
Author(s):  
Jesse W. Williams ◽  
Douglas Yau ◽  
Nan Sethakorn ◽  
Jacob Kach ◽  
Eleanor B. Reed ◽  
...  

T cell migration toward sites of antigen exposure is mediated by G protein signaling and is a key function in the development of immune responses. Regulators of G protein signaling (RGS) proteins modulate G protein signaling; however, their role in the regulation of adaptive immune responses has not been thoroughly explored. Herein we demonstrated abundant expression of the Gi/Gq-specific RGS3 in activated T cells, and that diminished RGS3 expression in a T cell thymoma increased cytokine-induced migration. To examine the role of endogenous RGS3 in vivo, mice deficient in the RGS domain (RGS3ΔRGS) were generated and tested in an experimental model of asthma. Compared with littermate controls, the inflammation in the RGS3ΔRGS mice was characterized by increased T cell numbers and the striking development of perivascular lymphoid structures. Surprisingly, while innate inflammatory cells were also increased in the lungs of RGS3ΔRGS mice, eosinophil numbers and Th2 cytokine production were equivalent to control mice. In contrast, T cell numbers in the draining lymph nodes (dLN) were reduced in the RGS3ΔRGS, demonstrating a redistribution of T cells from the dLN to the lungs via increased RGS3ΔRGS T cell migration. Together these novel findings show a nonredundant role for endogenous RGS3 in controlling T cell migration in vitro and in an in vivo model of inflammation.


2018 ◽  
Vol 11 (555) ◽  
pp. eaaq1075 ◽  
Author(s):  
Jeffrey S. Smith ◽  
Lowell T. Nicholson ◽  
Jutamas Suwanpradid ◽  
Rachel A. Glenn ◽  
Nicole M. Knape ◽  
...  

The chemokine receptor CXCR3 plays a central role in inflammation by mediating effector/memory T cell migration in various diseases; however, drugs targeting CXCR3 and other chemokine receptors are largely ineffective in treating inflammation. Chemokines, the endogenous peptide ligands of chemokine receptors, can exhibit so-called biased agonism by selectively activating either G protein– or β-arrestin–mediated signaling after receptor binding. Biased agonists might be used as more targeted therapeutics to differentially regulate physiological responses, such as immune cell migration. To test whether CXCR3-mediated physiological responses could be segregated by G protein– and β-arrestin–mediated signaling, we identified and characterized small-molecule biased agonists of the receptor. In a mouse model of T cell–mediated allergic contact hypersensitivity (CHS), topical application of a β-arrestin–biased, but not a G protein–biased, agonist potentiated inflammation. T cell recruitment was increased by the β-arrestin–biased agonist, and biopsies of patients with allergic CHS demonstrated coexpression of CXCR3 and β-arrestin in T cells. In mouse and human T cells, the β-arrestin–biased agonist was the most efficient at stimulating chemotaxis. Analysis of phosphorylated proteins in human lymphocytes showed that β-arrestin–biased signaling activated the kinase Akt, which promoted T cell migration. This study demonstrates that biased agonists of CXCR3 produce distinct physiological effects, suggesting discrete roles for different endogenous CXCR3 ligands and providing evidence that biased signaling can affect the clinical utility of drugs targeting CXCR3 and other chemokine receptors.


2012 ◽  
Vol 209 (10) ◽  
pp. 1743-1752 ◽  
Author(s):  
Mariko Hara-Chikuma ◽  
Shunsuke Chikuma ◽  
Yoshinori Sugiyama ◽  
Kenji Kabashima ◽  
Alan S. Verkman ◽  
...  

Chemokine-dependent trafficking is indispensable for the effector function of antigen-experienced T cells during immune responses. In this study, we report that the water/glycerol channel aquaporin-3 (AQP3) is expressed on T cells and regulates their trafficking in cutaneous immune reactions. T cell migration toward chemokines is dependent on AQP3-mediated hydrogen peroxide (H2O2) uptake but not the canonical water/glycerol transport. AQP3-mediated H2O2 transport is essential for the activation of the Rho family GTPase Cdc42 and the subsequent actin dynamics. Coincidentally, AQP3-deficient mice are defective in the development of hapten-induced contact hypersensitivity, which is attributed to the impaired trafficking of antigen-primed T cells to the hapten-challenged skin. We therefore suggest that AQP3-mediated H2O2 uptake is required for chemokine-dependent T cell migration in sufficient immune response.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3708-3708
Author(s):  
Chuntang Fu ◽  
Qingtian Li ◽  
Jia Zou ◽  
Changsheng Xing ◽  
Bingnan Yin ◽  
...  

Abstract Jmjd3, a histone H3K27 demethylase, is known to play a critical role in macrophage and T cell differentiation, but its role in T cell migration and T cell memory maintenance remains largely unknown. In this study, we show that Jmjd3 deficiency resulted in multiple alterations in T cell migration. Jmjd3 deletion limits CD4+ T cells egress out of the thymus, leading to thymic T-cell accumulation and peripheral lymphoid organ T-cell reduction. Gene profiling analysis of wild-type and Jmjd3-deficient CD4+ T cells identified altered expression of Jmjd3 target genes that correlated with changes in H3K27 and/or H3K4 trimethylation in promoters and gene body regions. The expression of the Jmjd3 target gene Pdlim4 is also regulated by Klf2, which regulates T-cell migration. Thus, our findings identify a novel Jmjd3 target gene, Pdlim4, in CD4+ T cell migration and provide insight into the molecular mechanisms by which Jmjd3 regulates T-cell migration. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 109 (12) ◽  
pp. 5122-5128 ◽  
Author(s):  
Dongsu Park ◽  
Inyoung Park ◽  
Deogwon Lee ◽  
Young Bong Choi ◽  
Hyunsook Lee ◽  
...  

Abstract Lck-interacting adaptor protein/Rlk/Itk-binding protein (Lad/RIBP) was previously identified as an adaptor protein involved in TCR-mediated T-cell activation. To elucidate the functions of Lad further, we here performed yeast 2-hybrid screening using Lad as bait and discovered that the G protein β subunit (Gβ) is a Lad-binding partner. Since the most well-known G protein–coupled receptor in T cells is the chemokine receptor, we investigated whether Lad is involved in chemokine signaling. We found that, upon chemokine treatment, Lad associated with Gβ in Jurkat T cells. Furthermore, ectopic expression of dominant-negative Lad or the reduction of endogenous Lad expression by siRNA impaired the chemokine-induced migration of T cells, indicating that Lad is required for chemokine-induced T-cell migration. Subsequent investigation of the signaling pathways revealed that, in response to chemokine, Lad associated with the tyrosine kinases Lck and Zap-70 and that Lad was essential for the activation of Zap-70. Moreover, Lad was required for the chemokine-dependent tyrosine phosphorylation of focal adhesion molecules that included Pyk2 and paxillin. Taken together, these data show that, upon chemokine stimulation, Lad acts as an adaptor protein that links the G protein β subunit to the tyrosine kinases Lck and Zap-70, thereby mediating T-cell migration.


1992 ◽  
Vol 4 (2) ◽  
pp. 124 ◽  
Author(s):  
C.G. Larsen ◽  
T. Jinquan ◽  
B. Gesser ◽  
K. Matsushima ◽  
K. Thestrup-Pedersen

Sign in / Sign up

Export Citation Format

Share Document