scholarly journals Murine Cytotoxic T Lymphocytes Recognize an Epitope in an EBNA-1 Fragment, but Fail to Lyse EBNA-1–expressing Mouse Cells

1998 ◽  
Vol 187 (3) ◽  
pp. 445-450 ◽  
Author(s):  
Siddhartha Mukherjee ◽  
Pankaj Trivedi ◽  
David M. Dorfman ◽  
George Klein ◽  
Alain Townsend

Major histocompatibility complex class I–restricted cytotoxic T lymphocytes (CTLs) specific for epitopes within eight of the nine Epstein Barr Virus (EBV)-encoded latency-associated proteins have been recovered from EBV-infected human subjects by restimulation of lymphocytes in vitro. However, human class I–restricted CTL responses capable of recognizing EBNA-1 expressing cells were not detected in these studies. We have raised a murine CTL line that recognizes an epitope within EBNA-1 by immunizing mice with a vaccinia virus encoding a COOH-terminal EBNA-1 fragment. This novel CTL line was used to investigate whether the epitope (positions 509–517 in EBNA-1, presented through Kd) was presented to CTL by mouse cells expressing full-length EBNA-1 or a deletion mutant of EBNA-1, lacking the Glycine-Alanine (Gly-Ala)–rich region. Cells expressing full-length EBNA-1 are not lysed by the CTL line, whereas cells expressing the Gly-Ala deletion mutant are recognized. These results suggest that epitopes from full-length EBNA-1 are poorly presented, and that the Gly-Ala–rich region is responsible for this phenomenon. The inefficient presentation of EBNA-1–derived epitopes may explain the absence or rarity of EBNA-1–specific CTLs in vivo, a strategy that may allow EBV to maintain persistence within the immunocompetent host without being eliminated by CTLs.

1992 ◽  
Vol 175 (2) ◽  
pp. 481-487 ◽  
Author(s):  
L C Eisenlohr ◽  
J W Yewdell ◽  
J R Bennink

Cytotoxic T lymphocytes (CTL) recognize class I major histocompatibility complex molecules complexed to peptides of eight to nine residues generated from cytosolic proteins. We find that CTL recognize, in vitro and in vivo, cells synthesizing a 10-residue peptide consisting of an initiating methionine followed by nine residues corresponding to a naturally processed determinant from influenza virus nucleoprotein (NP) (residues 147-155). Addition of two COOH-terminal residues corresponding to NP residues 157 and 158 severely reduced presentation of the endogenously produced peptide to CTL in vitro and in vivo. Extension of NH2 and COOH terminal flanking residues to include residues corresponding to NP residues 137-146 and 159-168 failed to increase the antigenicity of this peptide. Its presentation was greatly enhanced, however, by further extending the NH2 and COOH termini to include all of the additional residues of NP. These findings indicate first, that a naturally processed viral ligand (with an NH2-terminal Met) of a class I molecule contains sufficient information to access intracellular class I molecules, and second, that flanking residues can influence the processing and presentation of antigens to CTL.


1994 ◽  
Vol 14 (5) ◽  
pp. 3484-3493
Author(s):  
T J Wu ◽  
G Monokian ◽  
D F Mark ◽  
C R Wobbe

VP16 is a herpes simplex virus (HSV)-encoded transcriptional activator protein that is essential for efficient viral replication and as such may be a target for novel therapeutic agents directed against viral gene expression. We have reconstituted transcriptional activation by VP16 in an in vitro system that is dependent on DNA sequences from HSV immediate-early gene promoters and on protein-protein interactions between VP16 and Oct-1 that are required for VP16 activation in vivo. Activation increased synergistically with the number of TAATGARAT elements (the cis-acting element for VP16 activation in vivo) upstream of the core promoter, and mutations of this element that reduce Oct-1 or VP16 DNA binding reduced transactivation in vitro. A VP16 insertion mutant unable to interact with Oct-1 was inactive, but, surprisingly, a deletion mutant lacking the activation domain was approximately 65% as active as the full-length protein. The activation domains of Oct-1 were necessary for activation in reactions containing the VP16 deletion mutant, and they contributed significantly to activation by full-length VP16. Addition of a GA-rich element present in many HSV immediate-early gene enhancers synergistically stimulated VP16-activated transcription. Finally, oligopeptides that are derived from a region of VP16 thought to contact a cellular factor known as HCF (host cell factor) and that inhibit efficient VP16 binding to the TAATGARAT element also specifically inhibited VP16-activated, but not basal, transcription. Amino acid substitutions in one of these peptides identified three residues that are absolutely required for inhibition and presumably for interaction of VP16 with HCF.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Mari Kamiya ◽  
Fumitaka Mizoguchi ◽  
Kimito Kawahata ◽  
Dengli Wang ◽  
Masahiro Nishibori ◽  
...  

AbstractMuscle cell death in polymyositis is induced by CD8+ cytotoxic T lymphocytes. We hypothesized that the injured muscle fibers release pro-inflammatory molecules, which would further accelerate CD8+ cytotoxic T lymphocytes-induced muscle injury, and inhibition of the cell death of muscle fibers could be a novel therapeutic strategy to suppress both muscle injury and inflammation in polymyositis. Here, we show that the pattern of cell death of muscle fibers in polymyositis is FAS ligand-dependent necroptosis, while that of satellite cells and myoblasts is perforin 1/granzyme B-dependent apoptosis, using human muscle biopsy specimens of polymyositis patients and models of polymyositis in vitro and in vivo. Inhibition of necroptosis suppresses not only CD8+ cytotoxic T lymphocytes-induced cell death of myotubes but also the release of inflammatory molecules including HMGB1. Treatment with a necroptosis inhibitor or anti-HMGB1 antibodies ameliorates myositis-induced muscle weakness as well as muscle cell death and inflammation in the muscles. Thus, targeting necroptosis in muscle cells is a promising strategy for treating polymyositis providing an alternative to current therapies directed at leukocytes.


1998 ◽  
Vol 188 (6) ◽  
pp. 1203-1208 ◽  
Author(s):  
Graham S. Ogg ◽  
P. Rod Dunbar ◽  
Pedro Romero ◽  
Ji-Li Chen ◽  
Vincenzo Cerundolo

Vitiligo is an autoimmune condition characterized by loss of epidermal melanocytes. Using tetrameric complexes of human histocompatibility leukocyte antigen (HLA) class I to identify antigen-specific T cells ex vivo, we observed high frequencies of circulating MelanA-specific, A*0201-restricted cytotoxic T lymphocytes (A2–MelanA tetramer+ CTLs) in seven of nine HLA-A*0201–positive individuals with vitiligo. Isolated A2–MelanA tetramer+ CTLs were able to lyse A*0201-matched melanoma cells in vitro and their frequency ex vivo correlated with extent of disease. In contrast, no A2–MelanA tetramer+ CTL could be identified ex vivo in all four A*0201-negative vitiligo patients or five of six A*0201-positive asymptomatic controls. Finally, we observed that the A2–MelanA tetramer+ CTLs isolated from vitiligo patients expressed high levels of the skin homing receptor, cutaneous lymphocyte-associated antigen, which was absent from the CTLs seen in the single A*0201-positive normal control. These data are consistent with a role of skin-homing autoreactive melanocyte-specific CTLs in causing the destruction of melanocytes seen in autoimmune vitiligo. Lack of homing receptors on the surface of autoreactive CTLs could be a mechanism to control peripheral tolerance in vivo.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2198-2203 ◽  
Author(s):  
Liquan Gao ◽  
Ilaria Bellantuono ◽  
Annika Elsässer ◽  
Stephen B. Marley ◽  
Myrtle Y. Gordon ◽  
...  

Abstract Hematologic malignancies such as acute and chronic myeloid leukemia are characterized by the malignant transformation of immature CD34+ progenitor cells. Transformation is associated with elevated expression of the Wilm's tumor gene encoded transcription factor (WT1). Here we demonstrate that WT1 can serve as a target for cytotoxic T lymphocytes (CTL) with exquisite specificity for leukemic progenitor cells. HLA-A0201– restricted CTL specific for WT1 kill leukemia cell lines and inhibit colony formation by transformed CD34+ progenitor cells isolated from patients with chronic myeloid leukemia (CML), whereas colony formation by normal CD34+ progenitor cells is unaffected. Thus, the tissue-specific transcription factor WT1 is an ideal target for CTL-mediated purging of leukemic progenitor cells in vitro and for antigen-specific therapy of leukemia and other WT1-expressing malignancies in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2709-2709
Author(s):  
Masahiro Ogasawara ◽  
Misato Kikuchi ◽  
Satoru Kimura ◽  
Koichiro Kobayashi ◽  
Takayoshi Miyazono ◽  
...  

Abstract Survivin, a member of the inhibitors of the apoptosis family, is overexpressed frequently in a variety of cancers and hematological malignancies, but not in normal tissues. Murine in vivo and human in vitro studies have suggested that immunotherapy of cancer patients using survivin peptide might be feasible. In the present study, we examined whether HLA-A24 restricted cytotoxic T lymphocytes (CTL) which recognize survivin peptide can be generated from peripheral blood of lymphoma patients. HLA-A24 positive four lymphoma patients and two healthy volunteers were enrolled. Three immunodominant 9-mer candidate peptides (2B, 3A, 3B) were selected on the basis of anchoring motif of peptide binding to HLA-A24 molecule. CD8 T cells from the patients and healthy volunteers were stimulated several times with autologous monocyte-derived dendritic cells pulsed with survivin or control HIV peptides and tested for peptide-specific cytotoxicity by an LDH-release assay. CTL generated with survivin 2B peptide lysed autologous monocytes pulsed with a relevant peptide. However, other survivin peptides did not elicit CTL response. Non-pulsed or HIV peptide-pulsed monocytes were not lysed. On the other hand, CTL generated with HIV peptide only lysed HIV peptide-pulsed monocytes. CTL did not lyse allogeneic monocytes regardless of the peptide pulse. Cytotoxic activity was inhibited by the pretreatment of target cells by anti-HLA class I, not by anti-HLA-DR monoclonal antibody, indicating that the lysis was HLA class I (A24) restricted. These cells did not lyse Daudi and K562, excluding the involvement of LAK or NK activity. Importantly, these survivin peptide-specific CTL showed cytotoxicity to the patient’s lymphoma cells and HLA-A24 positive lymphoma cells. Based on these preclinical data, we have just started a pilot clinical study to examine the safety and the efficacy of peptide vaccination to relapsed, chemotherapy-resistant malignant lymphoma patients who are HLA-A24 and survivin positive. A 46-year old male patient with diffuse large B-cell lymphoma has just completed two courses of four vaccinations at two-week intervals with survivin 2B peptide (1 μg subcutaneously) in an incomplete Freund’s adjuvant (Montanide ISA-51, SEPPIC Co. France). We observed a marked decrease in the size of extra-nodular surface and cervical lymphnodes following vaccinations without serious adverse events. Immunological evaluations using HLA-tetramer and T cell receptor clonality assays revealed an increase in survivin-specific CTL frequency after vaccinations. The in-vitro feasibility study and pilot clinical trial indicate that a vaccination with a survivin peptide is safe and might be a promising novel strategy for the treatment of lymphoma patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3534-3534
Author(s):  
Juan F Vera ◽  
Valentina Hoyos ◽  
Barbara Savoldo ◽  
Concetta Quintarelli ◽  
Greta A Giordano ◽  
...  

Abstract Providing a proliferative and survival advantage to tumor-specific cytotoxic T lymphocytes (CTLs) remains a challenge in the adoptive therapy of cancer patients. It is now evident that the in vivo expansion of T cells after adoptive transfer is best accomplished in the lymphodepleted host due to the increased production of endogenous IL15 and IL7, which help restore lymphopoiesis. We have found that antigen activated cytotoxic T lymphocytes (CTLs) directed to tumor associated epitopes (for example derived from EBV, or from cancer testis antigens such as PRAME) down regulate a chain of IL7R, a common γ chain cytokine receptor, impairing their capacity to respond to IL7. We hypothesized that despite receptor downregulation, the signal transduction pathway for IL7R would remain intact in the CTLs so that forced expression of IL7Rα would restore IL7 responsiveness and improve in vivo expansion and survival of CTLs. We used EBV-specific CTLs as our model, and showed in vitro that a functional IL-7Ra molecule can be expressed in CTLs using retroviral gene transfer so that the percentage of receptor + cells increased from 2.4%±0.5% to 50%±20. This modification restored the in vitro proliferation of genetically modified CTLs in response to IL7 so that cell numbers increased from 1×106 cells to 0.1×109 (range, 0.6×108 to 0.3×109)] comparable with the effects of IL2 [from 1×106 cells to 0.7×109 (range, 0.7×107 to 1.6×109)] In contrast, control EBV-CTL with IL7 progressively declined in number (p<0.001) These effects were accomplished without alteration of antigen specificity or responsiveness to other common γ chain cytokines, and cell survival remained antigen dependent. In a xenogeneic mouse model, CTLs expressing IL7Ra significantly expanded in vivo in response to EBV-tumor antigen and the administration of IL7. By day 15, both control CTLs and IL7Ra+ CTLs had modestly proliferated in response to IL-2 (2.3 fold, range 1.1–5.1 for control CTLs, and 2.67 fold, range 0.6 to 8.15 for IL7Ra+ CTLs). In contrast, only IL7Ra+ CTLs significantly expanded in the presence of IL7, showing a 6.09 fold increase (range 0.7 to 25.2) compared to mice that received control CTLs and IL7 (0.9 fold, range 0.5–1.7) (p<0.0001). Modified CTLs also provided enhanced anti-tumor activity. SCID mice engrafted i.p with 3×106 tumor cells marked with Firefly luciferase, showed a rapid increase in signal in the absence of CTLs (Fold increase in luminance = 29.8 median, range 4.4 to 103) by day 14 after tumor engraftment. Similar tumor growth was observed in mice receiving IL7Ra+ CTLs without cytokines (luminance increase14.4 fold, range 1 to 90). In contrast, mice receiving IL7Ra+ CTLs and either IL2 or IL7, had a decline in tumor luminance (fold expansion 0.7, range 0.08 to 2.9, and 0.8, range 0.004 to 3.5, respectively p<0.0001). Although growth of the transgenic T cells remained antigen dependent, as a further safety measure, we incorporated an inducible suicide gene based on icaspase9 that can be activated by exposure to a small chemical inducer of dimerization (CID) (AP20187). Incorporation of this suicide gene did not affect the in vitro or in vivo anti-tumor activity of the CTL’s but allowed them to be rapidly eliminated. So that after a single dose of CID (50 nM) the transgenic population were decreased by >98.5% We conclude that forced expression of the IL-7Ra by CTLs can be used to recapitulate the response of these cells to this cytokine and thereby promote their in vivo anti-tumor activity after adoptive transfer either in a lymphodepleted host or after the administration of the recombinant protein.


1998 ◽  
Vol 21 (4) ◽  
pp. 283-294 ◽  
Author(s):  
Yu-Chun Lone ◽  
Iris Motta ◽  
Estelle Mottez ◽  
Yannik Guilloux ◽  
Annick Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document