scholarly journals Electron–plasmon and electron–magnon scattering in ferromagnets from first principles by combining GW and GT self-energies

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dmitrii Nabok ◽  
Stefan Blügel ◽  
Christoph Friedrich

AbstractThis work combines two powerful self-energy techniques: the well-known GW method and a self-energy recently developed by us that describes renormalization effects caused by the scattering of electrons with magnons and Stoner excitations. This GT self-energy, which is fully k-dependent and contains infinitely many spin-flip ladder diagrams, was shown to have a profound impact on the electronic band structure of Fe, Co, and Ni. In the present work, we refine the method by combining GT with the GW self-energy. The resulting GWT spectral functions exhibit strong lifetime effects and emergent dispersion anomalies. They are in an overall better agreement with experimental spectra than those obtained with GW or GT alone, even showing partial improvements over local-spin-density approximation dynamical mean-field theory. The performed analysis provides a basis for applying the GWT technique to a wider class of magnetic materials.

2016 ◽  
Vol 34 (3) ◽  
pp. 617-626 ◽  
Author(s):  
Maciej Łuszczek

AbstractThe hypothetical stoichiometric CeBa2Cu3O7 (Ce123) compound, which has not been synthesized as a single phase yet, was studied by the density functional theory (DFT). We utilized a method which merges the local spin density approximation (LSDA) with the dynamical mean-field theory (DMFT) to account for the electronic correlations. The LSDA+DMFT calculations were performed in the high-temperature range. The particular emphasis was put on the pressure-induced changes in the electronic band structure related to strongly correlated 4f states. The computational results indicate the occurrence of a large negative volumetric thermal expansion coefficient near T = 500 K and a trace of a low-volume isostructural metastable state at high temperatures.


2014 ◽  
Vol 16 (26) ◽  
pp. 13383-13389 ◽  
Author(s):  
Xinru Li ◽  
Ying Dai ◽  
Yandong Ma ◽  
Baibiao Huang

The electronic and magnetic properties of d-electron-based Dirac systems are studied by combining first-principles with mean field theory and Monte Carlo approaches.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1445
Author(s):  
Tahani A. Alrebdi ◽  
Mohammed Benali Kanoun ◽  
Souraya Goumri-Said

We investigated structure optimization, mechanical stability, electronic and bonding properties of the nanolaminate compounds Ti2PbC, Zr2PbC, and Hf2PbC using the first-principles calculations. These structures display nanolaminated edifices where MC layers are interleaved with Pb. The calculation of formation energies, elastic moduli and phonons reveal that all MAX phase systems are exothermic, and are intrinsically and dynamically stable at zero and under pressure. The mechanical and thermal properties are reported with fundamental insights. Results of bulk modulus and shear modulus show that the investigated compounds display a remarkable hardness. The elastic constants C11 and C33 rise more quickly with an increase in pressure than that of other elastic constants. Electronic and bonding properties are investigated through the calculation of electronic band structure, density of states, and charge densities.


Author(s):  
Tai Ma ◽  
Jia Wang ◽  
Xu Li ◽  
Min Pu

Two-dimensional (2D) materials with robust ferromagnetism properties have high potentials for application in the field of spintronics. However, extensively pursued 2D sheets, including pure graphene, monolayer BN, and layered transition metal dichalcogenides, are either nonmagnetic or weakly magnetic. The elastic, electronic and magnetic properties of monolayer CrN are calculated using the plane wave pseudo potential method based on first-principles density function theory. Upon determining through calculation that the structure of the monolayer CrN nanosheet is stable, its layer modulus [Formula: see text] shows that its strain resistance is stronger than that of graphene. Through strain analysis, materials with a monolayer CrN type of structure can be obtained. It is determined that 10% of the change in equilibrium area is still applicable to the 2D EOS, showing that this structure is quite stable. The spin-polarized electronic band structure is also calculated under different plane symmetry strains. The plane strain can be used to effectively adjust the metallic and magnetic properties of the material. Analyses of the band structure and density of states reveal that this material is half-metallic, where the origin of the ferromagnetism is related to [Formula: see text]–[Formula: see text] exchange interactions between the Cr and N atoms. Monolayer CrN has semimetallic properties and strong ferromagnetic (FM) properties. The FM effect can enhance the stability of the material. The results show that monolayer CrN is a semimetallic material with good elastic properties and a strong FM property. This material is therefore expected to have good application rospects in the field of spin electronics.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 446
Author(s):  
Mahdi Faghihnasiri ◽  
Aidin Ahmadi ◽  
Samaneh Alvankar Golpayegan ◽  
Saeideh Garosi Sharifabadi ◽  
Ali Ramazani

We utilize first principles calculations to investigate the mechanical properties and strain-dependent electronic band structure of the hexagonal phase of two dimensional (2D) HfS2. We apply three different deformation modes within −10% to 30% range of two uniaxial (D1, D2) and one biaxial (D3) strains along x, y, and x-y directions, respectively. The harmonic regions are identified in each deformation mode. The ultimate stress for D1, D2, and D3 deformations is obtained as 0.037, 0.038 and 0.044 (eV/Ang3), respectively. Additionally, the ultimate strain for D1, D2, and D3 deformation is obtained as 17.2, 17.51, and 21.17 (eV/Ang3), respectively. In the next step, we determine the second-, third-, and fourth-order elastic constants and the electronic properties of both unstrained and strained HfS2 monolayers are investigated. Our findings reveal that the unstrained HfS2 monolayer is a semiconductor with an indirect bandgap of 1.12 eV. We then tune the bandgap of HfS2 with strain engineering. Our findings reveal how to tune and control the electronic properties of HfS2 monolayer with strain engineering, and make it a potential candidate for a wide range of applications including photovoltaics, electronics and optoelectronics.


Sign in / Sign up

Export Citation Format

Share Document