scholarly journals The evolving definition of salivary gland stem cells

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Cecilia Rocchi ◽  
Lara Barazzuol ◽  
Rob P. Coppes

AbstractDysfunction of the salivary gland and irreversible hyposalivation are the main side effects of radiotherapy treatment for head and neck cancer leading to a drastic decrease of the quality of life of the patients. Approaches aimed at regenerating damaged salivary glands have been proposed as means to provide long-term restoration of tissue function in the affected patients. In studies to elucidate salivary gland regenerative mechanisms, more and more evidence suggests that salivary gland stem/progenitor cell behavior, like many other adult tissues, does not follow that of the hard-wired professional stem cells of the hematopoietic system. In this review, we provide evidence showing that several cell types within the salivary gland epithelium can serve as stem/progenitor-like cells. While these cell populations seem to function mostly as lineage-restricted progenitors during homeostasis, we indicate that upon damage specific plasticity mechanisms might be activated to take part in regeneration of the tissue. In light of these insights, we provide an overview of how recent developments in the adult stem cell research field are changing our thinking of the definition of salivary gland stem cells and their potential plasticity upon damage. These new perspectives may have important implications on the development of new therapeutic approaches to rescue radiation-induced hyposalivation.

2012 ◽  
pp. 1855-1866
Author(s):  
Alessandro Prigione

Regenerative medicine is a rapidly evolving research field whose main aims are to provide new therapeutic approaches and to repair or replace injured tissues with functional cells derived from stem cells. In the past few years, research breakthroughs have revolutionized the field by showing that all somatic cells have the potential to re-acquire stem cell-like properties. Thus, it appears possible to generate relevant cell types starting from cells easily obtained from affected individuals. The obtained differentiated cells could eventually serve as in vitro tools for the study of disease-associated mechanisms and for performing customized drug screenings. Moreover, in the context of cellular transplantation, these cells represent the ideal cell source given that they posses the same genetic code and thus will avoid the occurrence of unwanted immune reactions. Overall, this revolutionary technique called cellular reprogramming might provide substantial support for the future development of personalized medicine. In this chapter, I describe the recent advances in the field of stem cell-based regenerative medicine applications. Parkinson’s disease is chosen as a paradigmatic example in which the use of stem cells for study and therapy could have a relevant impact and potentially represent a future cure for this debilitating disorder.


Blood ◽  
1996 ◽  
Vol 88 (2) ◽  
pp. 487-491 ◽  
Author(s):  
RJ Jones ◽  
MI Collector ◽  
JP Barber ◽  
MS Vala ◽  
MJ Fackler ◽  
...  

The classical definition of lymphohematopoietic stem cells (LHSC), the most primitive progenitors of all blood cells, requires that they have the capacity for self-renewal and for the long-term production of all blood cell lineages. However, other characteristics of LHSC have been debated. Our previous data suggested that mouse LHSC are very slowly proliferating cells that generate delayed multilineage engraftment, while “radioprotection” (rapid engraftment that will prevent early death from radiation-induced marrow aplasia) results from more committed progenitors. Alternatively, some groups have reported that mouse LHSC are responsible for both radioprotection and long-term repopulation of all blood cell lineages. A possible explanation for this difference is that cells with the capacity for long-term production of all blood cell lineages are biologically heterogeneous. We now show that 10 LHSC can generate all blood cell lineages for the lifetime of the animal. However, these cells lacked radioprotection and spleen colony-forming activity. LHSC were identified and isolated by their small size, their lack of expression of antigens characteristic of mature blood cell lineages, and their high expression of aldehyde dehydrogenase. In addition, these cells were found to express undetectable or low levels of many antigens presumed to mark LHSC, including Thy-1, Ly-6A/E (Sca-1), c-kit, and CD34. There appears to be at least two classes of LHSC with the capacity for long-term production of all blood cell lineages: one that generates both radioprotection and long-term engraftment and one that produces delayed but durable engraftment. Our data suggest that this latter class may represent a very primitive class of LHSC.


Author(s):  
Alessandro Prigione

Regenerative medicine is a rapidly evolving research field whose main aims are to provide new therapeutic approaches and to repair or replace injured tissues with functional cells derived from stem cells. In the past few years, research breakthroughs have revolutionized the field by showing that all somatic cells have the potential to re-acquire stem cell-like properties. Thus, it appears possible to generate relevant cell types starting from cells easily obtained from affected individuals. The obtained differentiated cells could eventually serve as in vitro tools for the study of disease-associated mechanisms and for performing customized drug screenings. Moreover, in the context of cellular transplantation, these cells represent the ideal cell source given that they posses the same genetic code and thus will avoid the occurrence of unwanted immune reactions. Overall, this revolutionary technique called cellular reprogramming might provide substantial support for the future development of personalized medicine. In this chapter, I describe the recent advances in the field of stem cell-based regenerative medicine applications. Parkinson’s disease is chosen as a paradigmatic example in which the use of stem cells for study and therapy could have a relevant impact and potentially represent a future cure for this debilitating disorder.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 876
Author(s):  
Raquel Bernad ◽  
Cian J. Lynch ◽  
Rocio G. Urdinguio ◽  
Camille Stephan-Otto Attolini ◽  
Mario F. Fraga ◽  
...  

Pluripotent stem cells can be stabilized in vitro at different developmental states by the use of specific chemicals and soluble factors. The naïve and primed states are the best characterized pluripotency states. Naïve pluripotent stem cells (PSCs) correspond to the early pre-implantation blastocyst and, in mice, constitute the optimal starting state for subsequent developmental applications. However, the stabilization of human naïve PSCs remains challenging because, after short-term culture, most current methods result in karyotypic abnormalities, aberrant DNA methylation patterns, loss of imprinting and severely compromised developmental potency. We have recently developed a novel method to induce and stabilize naïve human PSCs that consists in the simple addition of a chemical inhibitor for the closely related CDK8 and CDK19 kinases (CDK8/19i). Long-term cultured CDK8/19i-naïve human PSCs preserve their normal karyotype and do not show widespread DNA demethylation. Here, we investigate the long-term stability of allele-specific methylation at imprinted loci and the differentiation potency of CDK8/19i-naïve human PSCs. We report that long-term cultured CDK8/19i-naïve human PSCs retain the imprinting profile of their parental primed cells, and imprints are further retained upon differentiation in the context of teratoma formation. We have also tested the capacity of long-term cultured CDK8/19i-naïve human PSCs to differentiate into primordial germ cell (PGC)-like cells (PGCLCs) and trophoblast stem cells (TSCs), two cell types that are accessible from the naïve state. Interestingly, long-term cultured CDK8/19i-naïve human PSCs differentiated into PGCLCs with a similar efficiency to their primed counterparts. Also, long-term cultured CDK8/19i-naïve human PSCs were able to differentiate into TSCs, a transition that was not possible for primed PSCs. We conclude that inhibition of CDK8/19 stabilizes human PSCs in a functional naïve state that preserves imprinting and potency over long-term culture.


2015 ◽  
Vol 2015 ◽  
pp. 1-29 ◽  
Author(s):  
Indumathi Somasundaram ◽  
Rashmi Mishra ◽  
Harikrishnan Radhakrishnan ◽  
Rajkumar Sankaran ◽  
Venkata Naga Srikanth Garikipati ◽  
...  

The study aims to identify the phenotypic marker expressions of different human adult stem cells derived from, namely, bone marrow, subcutaneous fat, and omentum fat, cultured in different media, namely, DMEM-Low Glucose, Alpha-MEM, DMEM-F12 and DMEM-KO and under long term culture conditions (>P20). We characterized immunophenotype by using various hematopoietic, mesenchymal, endothelial markers, and cell adhesion molecules in the long term cultures (Passages-P1, P3, P5, P9, P12, P15, and P20.) Interestingly, data revealed similar marker expression profiles irrespective of source, basal media, and extensive culturing. This demonstrates that all adult stem cell sources mentioned in this study share similar phenotypic marker and all media seem appropriate for culturing these sources. However, a disparity was observed in the markers such as CD49d, CD54, CD117, CD29, and CD106, thereby warranting further research on these markers. Besides the aforesaid objective, it is understood from the study that immunophenotyping acts as a valuable tool to identify inherent property of each cell, thereby leading to a valuable cell based therapy.


2021 ◽  
Author(s):  
Kim Martinez ◽  
Maria Isabel Menéndez-Menéndez ◽  
David Checa ◽  
Andres Bustillo

BACKGROUND The design of Virtual Reality Serious Games (VR-SG) is a subject still developing. One of its open developments is the definition of metrics to evaluate the fun and learning result. In this way, weaknesses and strengths in the design of serious games can be found for future works in this research field. OBJECTIVE This paper aims to create a metric that can be used to rate the gameplay of VR-SG. This metric’s novelty allows to evaluate the different fun and learning features and give them a quantitative rating. A study case shows the capability of implementing this evaluation to identify strengths and weaknesses of VR-SGs. METHODS The new VR-SG metric is developed on the basis of the Mechanics, Dynamics and Aesthetic (MDA) framework but including User Experience (UX) elements and adapting them to VR-SG. This metric includes 1) UX aspects: VR-headsets, training tutorials and interactive adaptions to avoid VR inconveniences; and 2) MDA aspects: exclusive VR audiovisual elements and its aesthetics interactions. RESULTS The selected indie serious game is Hellblade, developed to raise awareness about the difficulties of people suffering from psychosis with two versions: one for 2D-screens and the other for VR devices. The comparison of metric´s scores for both versions shows: 1) some VR dynamics increase the gameplay impact and therefore, the educational capacity; and 2) flaws in game design where the scores drop down. Some of these flaws are: reduced number of levels, missions and items, lack of a tutorial to enhance usability and lack of strategies and rewards in the long-term to increase motivation. CONCLUSIONS This metric allows to identify the elements of the gameplay and UX that are necessary to learn in VR experiences. The study case shows this research is useful to evaluate the educational utility of VR-SG. Further works will analyze VR applications to synthetize every game element influencing its intrinsic sensations. CLINICALTRIAL The trials have not been registered, as testing for this metric has not involved people with mental conditions or addressed other medical applications. Hellblade is a commercial video game that anyone can purchase and play. The trials have been carried out to obtain results on the gaming experience of different people in relation to the educational purpose of raising awareness of psychosis.


2020 ◽  
Vol 13 (10) ◽  
pp. dmm047035
Author(s):  
Dah-Jiun Fu ◽  
Andrea J. De Micheli ◽  
Mallikarjun Bidarimath ◽  
Lora H. Ellenson ◽  
Benjamin D. Cosgrove ◽  
...  

ABSTRACTHumans and mice have cyclical regeneration of the endometrial epithelium. It is expected that such regeneration is ensured by tissue stem cells, but their location and hierarchy remain debatable. A number of recent studies have suggested the presence of stem cells in the mouse endometrial epithelium. At the same time, it has been reported that this tissue can be regenerated by stem cells of stromal/mesenchymal or bone marrow cell origin. Here, we describe a single-cell transcriptomic atlas of the main cell types of the mouse uterus and epithelial subset transcriptome and evaluate the contribution of epithelial cells expressing the transcription factor PAX8 to the homeostatic regeneration and malignant transformation of adult endometrial epithelium. According to lineage tracing, PAX8+ epithelial cells are responsible for long-term maintenance of both luminal and glandular epithelium. Furthermore, multicolor tracing shows that individual glands and contiguous areas of luminal epithelium are formed by clonal cell expansion. Inactivation of the tumor suppressor genes Trp53 and Rb1 in PAX8+ cells, but not in FOXJ1+ cells, leads to the formation of neoplasms with features of serous endometrial carcinoma, one of the most aggressive types of human endometrial malignancies. Taken together, our results show that the progeny of single PAX8+ cells represents the main source of regeneration of the adult endometrial epithelium. They also provide direct experimental genetic evidence for the key roles of the P53 and RB pathways in the pathogenesis of serous endometrial carcinoma and suggest that PAX8+ cells represent the cell of origin of this neoplasm.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2377-2377
Author(s):  
Pengxu Qian ◽  
Youngwook Ahn ◽  
Bony De Kumar ◽  
Christof Nolte ◽  
Xi C. He ◽  
...  

Abstract Hematopoietic stem cells (HSCs) sustain lifelong production of multiple blood cell types through a finely-tuned balance between stem cell maintenance and activation to prevent bone marrow exhaustion or overgrowth. The highly conserved Hox family of homeodomain containing transcription factors have been identified as key regulators and contributors in both normal hematopoiesis and leukemogenesis. Most previous work has focused on individual Hox genes; however, it remains largely unknown whether and how multiple Hox genes in a cluster are regulated and function in hematopoiesis. We initiated a study to perform systematic, high-throughput transcriptome analysis in the following 17 cell types from the bone marrow (BM) of C57BL/6J mice: 4 hematopoietic stem and progenitor cells (CD49blo long-term (LT)-HSC, CD49bhi intermediate-term (IT)-HSC, short-term (ST)-HSC, and MPP); and 4 committed progenitors (CLP, CMP, GMP and MEP); and 9 mature lineage cells (B cell, T cell, NK cell, dendritic cell, monocyte, macrophage, granulocyte, megakaryocyte and nucleated erythrocyte). Intriguingly, as part of a unique fingerprint observed in the most primitive CD49blo LT-HSCs, we detected expression from the Hoxb cluster. Further analysis on all the four Hox clusters revealed that most of the genes from the Hoxb cluster, and not from the other Hox clusters, were predominantly expressed in the CD49blo LT-HSCs. This suggests that they might function as a cluster to maintain CD49blo LT-HSCs. A previous study has shown that one cis -regulatory retinoic acid responsive element (RARE), is conserved among vertebrate species and regulates multiple Hoxb gene expression in central nervous system development. Thus, we asked whether RARE is essential for maintenance of primitive CD49blo LT-HSCs by regulation of Hoxb cluster. To test this hypothesis, we utilized a RAREΔ knockout mouse model and assayed for HSC numbers in BM. We observed that homozygous deletion of RARE led to 2-fold reduction in both the frequency and absolute number of CD49blo LT-HSCs. Functionally, we first conducted limiting dilution, competitive repopulating unit (CRU) assays by transplanting 2.5×104, 7.5×104 or 2×105 of BM cells from RAREΔ mutants and their control littermates, together with 2×105 recipient BM cells derived from the Ptprc mutant strain, into lethally irradiated recipient mice. Our data showed a 2.5-fold decrease in functional HSCs in RAREΔ HSCs (1/20,326) compared to control (1/50,839). To further evaluate the long-term effect of RARE on HSCs, we performed serial BM transplantation and observed a 12.9-fold reduction of reconstitution ability after secondary transplantation. These data indicate that deletion of RARE compromised HSC long-term reconstitution capacity. Collectively, our work provides evidence showing that RARE is essential for maintenance of the primitive HSCs by regulation of Hoxb cluster genes. Disclosures No relevant conflicts of interest to declare.


2010 ◽  
Vol 108 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Robert K. Montgomery ◽  
Diana L. Carlone ◽  
Camilla A. Richmond ◽  
Loredana Farilla ◽  
Mariette E. G. Kranendonk ◽  
...  

The intestinal epithelium is maintained by a population of rapidly cycling (Lgr5+) intestinal stem cells (ISCs). It has been postulated, however, that slowly cycling ISCs must also be present in the intestine to protect the genome from accumulating deleterious mutations and to allow for a response to tissue injury. Here, we identify a subpopulation of slowly cycling ISCs marked by mouse telomerase reverse transcriptase (mTert) expression that can give rise to Lgr5+ cells. mTert-expressing cells distribute in a pattern along the crypt–villus axis similar to long-term label-retaining cells (LRCs) and are resistant to tissue injury. Lineage-tracing studies demonstrate that mTert+ cells give rise to all differentiated intestinal cell types, persist long term, and contribute to the regenerative response following injury. Consistent with other highly regenerative tissues, our results demonstrate that a slowly cycling stem cell population exists within the intestine.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Catriona Kelly ◽  
Cara C. S. Flatt ◽  
Neville H. McClenaghan

The incidence of diabetes and the associated debilitating complications are increasing at an alarming rate worldwide. Current therapies for type 1 diabetes focus primarily on administration of exogenous insulin to help restore glucose homeostasis. However, such treatment rarely prevents the long-term complications of this serious metabolic disorder, including neuropathy, nephropathy, retinopathy, and cardiovascular disease. Whole pancreas or islet transplantations have enjoyed limited success in some individuals, but these approaches are hampered by the shortage of suitable donors and the burden of lifelong immunosuppression. Here, we review current approaches to differentiate nonislet cell types towards an islet-cell phenotype which may be used for larger-scale cell replacement strategies. In particular, the differentiation protocols used to direct embryonic stem cells, progenitor cells of both endocrine and nonendocrine origin, and induced pluripotent stem cells towards an islet-cell phenotype are discussed.


Sign in / Sign up

Export Citation Format

Share Document