scholarly journals Triacylglycerols are preferentially oxidized over free fatty acids in heated soybean oil

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Qing Shen ◽  
Zhichao Zhang ◽  
Shiva Emami ◽  
Jianchu Chen ◽  
Juliana Maria Leite Nobrega de Moura Bell ◽  
...  

AbstractIn oil, free fatty acids (FFAs) are thought compared the efficiency of hydrolysis wto be the preferred substrate for lipid oxidation although triacylglycerols (TAGs) are the predominant lipid class. We determined the preferential oxidation substrate (TAGs versus FFAs) in soybean oil heated at 100 °C for 24 h, after validating a method for quantifying esterified and free lipid oxidation products (i.e., oxylipins) with mass-spectrometry. Reaction velocities and turnover (velocity per unit substrate) of FFA, and free and TAG-bound (esterified) oxylipins were determined. FFA hydrolysis rate and turnover were orders of magnitude greater (16-4217 fold) than that of esterified and free oxylipin formation. The velocity and turnover of TAG-bound oxylipins was significantly greater than free oxylipins by 282- and 3-fold, respectively. The results suggest that during heating, TAGs are preferentially oxidized over FFAs, despite the rapid hydrolysis and availability of individual FFAs as substrates for oxidation. TAG-bound oxylipins may serve as better markers of lipid oxidation.

1995 ◽  
Vol 61 ◽  
pp. 259-271 ◽  
Author(s):  
P.B. Addis ◽  
T.P. Carr ◽  
C.A. Hassel ◽  
Z.Z. Huang ◽  
G.J. Warner

New atherosclerosis causative factors and preventive modalities have been identified. Atherogenic factors include lipid oxidation products, such as cholesterol oxidation products, malonaldehyde and other aldehydes; trans-fatty acids; some saturated fatty acids (lauric, myristic and possibly palmitic acids); and myristic acid plus cholesterol. Lipid oxidation products are well suited to induce arterial damage, based on their known cytotoxic effects; evidence also indicates the possibility of plaque promotion and stimulation of thrombogenesis. Anti-atherogenic factors include antioxidants, fish oils and other polyunsaturates (if protected from oxidation), fibre and trace minerals such as copper, manganese, selenium and zinc. Iron is unique, being considered as both a potential promoter of atherosclerosis (component of ferritin, conceivably inducing lipid oxidation) and a possible anti-atherogenic component (of antioxidant enzyme catalase). It is apparent that an entire new series of research challenges has been uncovered.


2014 ◽  
Vol 964 ◽  
pp. 65-78 ◽  
Author(s):  
Claire Vigor ◽  
Justine Bertrand-Michel ◽  
Edith Pinot ◽  
Camille Oger ◽  
Joseph Vercauteren ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5122
Author(s):  
Agnieszka Orkusz ◽  
Wioletta Wolańska ◽  
Urszula Krajinska

The deterioration of food quality due to lipid oxidation is a serious problem in the food sector. Oxidation reactions adversely affect the physicochemical properties of food, worsening its quality. Lipid oxidation products are formed during the production, processing, and storage of food products. In the human diet, the sources of lipid oxidation products are all fat-containing products, including goose meat with a high content of polyunsaturated fatty acids. This study aims at comparing the fatty acid profile of goose breast muscle lipids depending on the storage conditions: type of atmosphere, temperature, and storage time. Three-way variance analysis was used to evaluate changes in the fatty acids profile occurring in goose meat. The health aspect of fatty acid oxidation of goose meat is also discussed. In general, the fatty acid composition changed significantly during storage in the meat packed in the high-oxygen modified atmosphere at different temperatures (1 °C and 4 °C). Higher temperature led to a higher degree of lipid oxidation and nutrient loss. During the storage of samples in vacuum, no changes in the fatty acid content and dietary indices were found, regardless of the storage temperature, which indicates that the anaerobic atmosphere ensured the oxidative stability of goose meat during 11 days of refrigerated storage.


2022 ◽  
Vol 8 ◽  
Author(s):  
Martin Grootveld

In this manuscript, a series of research reports focused on dietary lipid oxidation products (LOPs), their toxicities and adverse health effects are critically reviewed in order to present a challenge to the mindset supporting, or strongly supporting, the notion that polyunsaturated fatty acid-laden frying oils are “safe” to use for high-temperature frying practises. The generation, physiological fates, and toxicities of less commonly known or documented LOPs, such as epoxy-fatty acids, are also considered. Primarily, an introduction to the sequential autocatalytic peroxidative degradation of unsaturated fatty acids (UFAs) occurring during frying episodes is described, as are the potential adverse health effects posed by the dietary consumption of aldehydic and other LOP toxins formed. In continuance, statistics on the dietary consumption of fried foods by humans are reviewed, with a special consideration of French fries. Subsequently, estimates of human dietary aldehyde intake are critically explored, which unfortunately are limited to acrolein and other lower homologues such as acetaldehyde and formaldehyde. However, a full update on estimates of quantities derived from fried food sources is provided here. Further items reviewed include the biochemical reactivities, metabolism and volatilities of aldehydic LOPs (the latter of which is of critical importance regarding the adverse health effects mediated by the inhalation of cooking/frying oil fumes); their toxicological actions, including sections focussed on governmental health authority tolerable daily intakes, delivery methods and routes employed for assessing such effects in animal model systems, along with problems encountered with the Cramer classification of such toxins. The mutagenicities, genotoxicities, and carcinogenic potential of aldehydes are then reviewed in some detail, and following this the physiological concentrations of aldehydes and their likely dietary sources are considered. Finally, conclusions from this study are drawn, with special reference to requirements for (1) the establishment of tolerable daily intake (TDI) values for a much wider range of aldehydic LOPs, and (2) the performance of future nutritional and epidemiological trials to explore associations between their dietary intake and the incidence and severity of non-communicable chronic diseases (NCDs).


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 394
Author(s):  
Jaroslawa Rutkowska ◽  
Agata Antoniewska ◽  
Montserrat Martinez-Pineda ◽  
Agnieszka Nawirska-Olszańska ◽  
Anna Zbikowska ◽  
...  

The study aimed at assessing effects of black chokeberry polyphenol extract (ChPE) added (0.025–0.075%) to xylitol-containing muffins to reduce lipid oxidation, especially in preventing degradation of hydroperoxides throughout the storage period. Among polyphenolic compounds (3092 mg/100 g in total) in ChPE, polymeric procyanidins were the most abundant (1564 mg/100 g). ChPE addition resulted in a significantly increased capacity of scavenging free radicals and markedly inhibited hydroperoxides decomposition, as reflected by low anisidine values (AnV: 3.25–7.52) throughout the storage. On the other hand, sucrose-containing muffins had increased amounts of primary lipid oxidation products and differed significantly from other samples in conjugated diene hydroperoxides (CD values), which was in accordance with the decrease of C18:2 9c12c in those muffins after storage. In addition, sucrose-containing muffins were found to be those with the highest level of contamination with toxic carbonyl lipid oxidation products. Throughout the storage, no yeast or moulds contamination were found in higher enriched muffins. The incorporation of polyphenols to xylitol-containing muffins resulted in preventing decomposition of polyunsaturated fatty acids (PUFAs), and in reducing the content of some toxic aldehydes. ChPE could be regarded as a possible solution to xylitol-containing muffins to extend their shelf life. The results support the use of xylitol in muffin manufacture as being favourable in terms of suitability for diabetics.


Sign in / Sign up

Export Citation Format

Share Document