scholarly journals Ankyrin G organizes membrane components to promote coupling of cell mechanics and glucose uptake

Author(s):  
Alicia M. Salvi ◽  
Jennifer L. Bays ◽  
Samantha R. Mackin ◽  
René-Marc Mege ◽  
Kris A. DeMali
2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Kris DeMali ◽  
Alica Salvi ◽  
Jennifer Bays ◽  
Samantha Mackin

2016 ◽  
Author(s):  
Christophe Leterrier ◽  
Nadine Clerc ◽  
Fanny Rueda-Boroni ◽  
Audrey Montersino ◽  
Bénédicte Dargent ◽  
...  

The axon initial segment (AIS) is a specialized neuronal compartment that plays a key role in neuronal development and excitability. It concentrates multiple ion channels and cell adhesion molecules. The anchoring of these AIS membrane components is known to be highly dependent of the scaffold protein ankyrin G (ankG) but whether ankG membrane partners play a reciprocal role in ankG targeting and stabilization has not been studied yet. In cultured hippocampal neurons and cortical organotypic slices, we found that shRNA-mediated knockdown of ankG membrane partners led to a decrease of ankG concentration and perturbed the AIS formation and maintenance. These perturbations were rescued by expressing an AIS-targeted sodium channel, or a minimal construct containing the ankyrin-binding domain of Nav1.2 and a membrane anchor. We thus demonstrate that a tight and precocious association of ankG to its membrane partners is crucial for the establishment and maintenance of the AIS.


Author(s):  
G.P.A. Vigers ◽  
R.A. Crowther ◽  
B.M.F. Pearse

Clathrin forms the polyhedral cage of coated vesicles, which mediate the transfer of selected membrane components within eukaryotic cells. Clathrin cages and coated vesicles have been extensively studied by electron microscopy of negatively stained preparations and shadowed specimens. From these studies the gross morphology of the outer part of the polyhedral coat has been established and some features of the packing of clathrin trimers into the coat have also been described. However these previous studies have not revealed any internal details about the position of the terminal domain of the clathrin heavy chain, the location of the 100kd-50kd accessory coat proteins or the interactions of the coat with the enclosed membrane.


Author(s):  
Michael Edidin

Cell surface membranes are based on a fluid lipid bilayer and models of the membranes' organization have emphasised the possibilities for lateral motion of membrane lipids and proteins within the bilayer. Two recent trends in cell and membrane biology make us consider ways in which membrane organization works against its inherent fluidity, localizing both lipids and proteins into discrete domains. There is evidence for such domains, even in cells without obvious morphological polarity and organization [Table 1]. Cells that are morphologically polarised, for example epithelial cells, raise the issue of membrane domains in an accute form.The technique of fluorescence photobleaching and recovery, FPR, was developed to measure lateral diffusion of membrane components. It has also proven to be a powerful tool for the analysis of constraints to lateral mobility. FPR resolves several sorts of membrane domains, all on the micrometer scale, in several different cell types.


2019 ◽  
Vol 476 (24) ◽  
pp. 3687-3704 ◽  
Author(s):  
Aphrodite T. Choumessi ◽  
Manuel Johanns ◽  
Claire Beaufay ◽  
Marie-France Herent ◽  
Vincent Stroobant ◽  
...  

Root extracts of a Cameroon medicinal plant, Dorstenia psilurus, were purified by screening for AMP-activated protein kinase (AMPK) activation in incubated mouse embryo fibroblasts (MEFs). Two isoprenylated flavones that activated AMPK were isolated. Compound 1 was identified as artelasticin by high-resolution electrospray ionization mass spectrometry and 2D-NMR while its structural isomer, compound 2, was isolated for the first time and differed only by the position of one double bond on one isoprenyl substituent. Treatment of MEFs with purified compound 1 or compound 2 led to rapid and robust AMPK activation at low micromolar concentrations and increased the intracellular AMP:ATP ratio. In oxygen consumption experiments on isolated rat liver mitochondria, compound 1 and compound 2 inhibited complex II of the electron transport chain and in freeze–thawed mitochondria succinate dehydrogenase was inhibited. In incubated rat skeletal muscles, both compounds activated AMPK and stimulated glucose uptake. Moreover, these effects were lost in muscles pre-incubated with AMPK inhibitor SBI-0206965, suggesting AMPK dependency. Incubation of mouse hepatocytes with compound 1 or compound 2 led to AMPK activation, but glucose production was decreased in hepatocytes from both wild-type and AMPKβ1−/− mice, suggesting that this effect was not AMPK-dependent. However, when administered intraperitoneally to high-fat diet-induced insulin-resistant mice, compound 1 and compound 2 had blood glucose-lowering effects. In addition, compound 1 and compound 2 reduced the viability of several human cancer cells in culture. The flavonoids we have identified could be a starting point for the development of new drugs to treat type 2 diabetes.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
R Zapata-Bustos ◽  
AJ Alonso-Castro ◽  
J Romo-Yañez ◽  
LA Salazar-Olivo
Keyword(s):  

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
K Christensen ◽  
D Kotowska ◽  
L Olsen ◽  
S Bhattacharya ◽  
X Fretté ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
HC Huang ◽  
CL Chao ◽  
SY Hwang ◽  
TC Chang ◽  
CH Chao ◽  
...  

2010 ◽  
Vol 49 (02) ◽  
pp. N10-N12 ◽  
Author(s):  
F. Cicone ◽  
M. Stalder ◽  
D. Geiger ◽  
A. Cairoli ◽  
A. Bischof Delaloye ◽  
...  

2018 ◽  
Vol 56 (08) ◽  
pp. e200-e201
Author(s):  
H Jodeleit ◽  
O Al-amodi ◽  
J Caesar ◽  
C Villarroel Aguilera ◽  
L Holdt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document